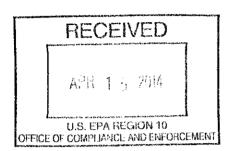


Anchorage Water & Wastewater Utility

Treatment Division

April 9th, 2014


Director, Office of Water U.S. Environmental Protection Agency, Region 10 NPDES Compliance Unit 1200 Sixth Avenue, OW-133 Seattle, Washington 98101

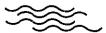
Subject:

Whole Effluent Toxicity Testing Results

1st Ouarter 2014

NPDES Permit No. AK-002255-1

The John M. Asplund Water Pollution Control Facility, NPDES Permit No. AK-002255-1, requires that the results of quarterly whole effluent toxicity (WET) testing be submitted with the discharge monitoring report (DMR) for the month following the test month. The attached 3-Species WET testing report outlines test results for short-term chronic toxicity tests conducted with three species on samples collected February 17th, 19th, and 21st, 2014.


The permit requires a re-screen with three species once each year to be followed for the remainder of the next year with quarterly testing on the most sensitive species. The tests included a fertilization test using the purple sea urchin (Strongylocentrotus purpuratus), a bivalve larvae survival and development test using the blue mussel (Mytilus galloprovincialis) and a larval survival and growth test using the topsmelt (Atherinops affinis).

Bioassay results in this February 2014 three-species testing showed measurable toxicity in the effluent at the concentrations tested. The highest toxicity reported for this three-species WET testing was 71.4 TUc. The permit toxicity trigger of 143 TUc was not exceeded in any of the tests. Urchin gametes again appear to be the most sensitive organisms tested. For the reasons detailed in the test report, the contract laboratory recommends continuing to use the purple sea urchin as the most sensitive species for single species toxicity testing during 2014 and continuing until the three-species test is again repeated in 2015. This is consistent with results of the threespecies scans conducted during 2005 through 2013 in which the urchin was the most sensitive species.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of

Anchorage Water & Wastewater Utility (Clearly

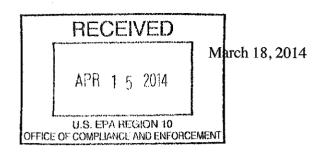
my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

I can be contacted at (907) 564-2799 or mailto: David. Persinger@awwu.biz should you have any questions.

Sincerely,


David A. Persinger, P.E.

Director, Treatment Division


Alaska Department of Environmental Conservation, Division of Water Cc:

Rob Gustafson, Water Quality Supervisor, AWWU

Jeff Axmann, Superintendent, John M. Asplund WPCF, AWWU

Gary Lawley Kinnetic Laboratories, Inc. 1102 West 7th Avenue Anchorage, AK 99501

Gary,

I have enclosed our report "NPDES Compliance Toxicity Testing of the Municipality of Anchorage John M. Asplund Water Pollution Control Facility Effluent: Annual Species Screening" for the effluent samples collected February 17, 19, and 21, 2014. The Anchorage NPDES permit states that "each year the permittee shall re-screen for one quarter with three species and continue to monitor for the rest of the year with the most sensitive species". Accordingly, the current species screening consisted of performing the following US EPA chronic toxicity tests:

- the echinoderm sperm fertilization test with the purple urchin, Strongylocentrotus purpuratus;
- the embryo-development test with the mussel, Mytilus galloprovincialis; and
- the 7-day survival and growth test with topsmelt, Atherinops affinis.

The results of this testing follow:

Effects of Anchorage Effluent on Purple Urchin Sperm Fertilization

There were significant reductions in successful fertilization at the 2.8% effluent concentration; the NOEC was 1.4% effluent, resulting in 71.4 TUc.

Effects of Anchorage Effluent on Mytilus galloprovincialis Embryo Development

There were <u>no</u> significant reductions in normal development at the any of the effluent concentrations tested; the NOEC was 2.8% effluent, resulting in 35.7 TUc.

Effects of Anchorage Effluent on *Atherinops affinis* (Topsmelt)

There were <u>no</u> significant reductions in survival or growth at the any of effluent concentrations tested; the NOEC was 2.8% effluent, resulting in 35.7 TUc.

Conclusion and Recommendation

Toxicity was observed at the 2.8% effluent concentration in the purple urchin sperm fertilization test. Accordingly, and on the basis of indication from previous testing that the echinoderm (e.g., purple urchin) sperm fertilization test was the most sensitive test in the earlier screening, we recommend that the echinoderm sperm fertilization test be retained as the compliance test species for the remainder of the NPDES Permit cycle.

If you have any questions regarding the performance and interpretation of these tests, please contact my colleagues Alison Briden or Dr. Scott Ogle at (707) 207-7760.

Sincerely,

Digitally signed by Stevi Vasquez
Date: 2014.03.20
12:12:59 -07'00'

Stevi Vasquez

Aquatic Ecotoxicologist

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 22017.

NPDES Compliance Toxicity Testing of the Municipality of Anchorage John M. Asplund Water Pollution Control Facility Effluent: Annual Species Screening

Samples collected February 17, 19, and 21, 2014

Performed For:

Kinnetic Laboratories, Inc. 1102 West 7th Avenue Anchorage, AK 99501

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534

March 2014

NPDES Compliance Toxicity Testing of the Municipality of Anchorage John M. Asplund Water Pollution Control Facility Effluent: Annual Species Screening

Samples collected February 17, 19, and 21, 2014

Table of Contents

	Page
1. INTRODUCTION	1
2. TOXICITY TEST PROCEDURES	1
2.1 Receipt and Handling of the Effluent Samples	1
2.2 Echinoderm Fertilization Toxicity Testing with Strongylocentrotus purpuratus	2
2.2.1 Reference Toxicant Testing of the Purple Urchins	2
2.3 Bivalve Embryo Development Toxicity Testing with Mytilus galloprovincialis	3
2.3.1 Reference Toxicant Testing of the Mytilus galloprovincialis	4
2.4 Survival and Growth Toxicity Testing with Topsmelt (Atherinops affinis)	4
2.4.1 Reference Toxicant Testing of the Topsmelt	5
3. RESULTS	6
3.1 Effects of Anchorage Effluent on Purple Urchins	6
3.1.1 Reference Toxicant Toxicity to the Purple Urchin	6
3.2 Effects of Anchorage Effluent on Mytilus galloprovincialis	7
3.2.1 Reference Toxicant Toxicity to Mytilus galloprovincialis	7
3.3 Effects of Anchorage Effluent on Topsmelt	8
3.3.1 Reference Toxicant Toxicity to Topsmelt	9
4. SUMMARY AND CONCLUSIONS	10
4.1 QA/QC Summary	10

Appendices

- Appendix A Chain-of-Custody Records for the Collection and Delivery of the Anchorage Effluent Samples
- Appendix B Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Anchorage Effluent to Purple Urchin Sperm Fertilization
- Appendix C Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Purple Urchin Sperm
- Appendix D Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Anchorage Effluent to *Mytilus galloprovincialis* Embryos
- Appendix E Test Data and Summary of Statistics for the Reference Toxicant Evaluation of *Mytilus galloprovincialis* Embryos
- Appendix F Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Anchorage Effluent to Topsmelt (*Atherinops affinis*)
- Appendix G Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Topsmelt (*Atherinops affinis*)

1. INTRODUCTION

Kinnetic Laboratories, Inc., (Kinnetic) has contracted Pacific EcoRisk (PER) to perform evaluations of the chronic toxicity of effluent collected from the Municipality of Anchorage John M. Asplund Water Pollution Control Facility (Anchorage). The Anchorage NPDES permit states that "each year the permittee shall re-screen for one quarter with three species and continue to monitor for the rest of the year with the most sensitive species". Accordingly, the current testing comprises this annual species screening, and consisted of performing the following US EPA chronic toxicity tests:

- an echinoderm sperm fertilization test with the purple urchin, Strongylocentrotus purpuratus;
- an embryo-development test with the mussel, Mytilus galloprovincialis; and
- a 7-day survival and growth test with topsmelt, Atherinops affinis.

These tests were performed using effluent samples collected on February 17, 19, and 21, 2014. In order to assess the sensitivity of the test organisms to chronic toxic stress, reference toxicant tests were also performed. This report describes the performance and results of these effluent and reference toxicant tests.

2. TOXICITY TEST PROCEDURES

The methods used in conducting this toxicity testing followed the guidelines established by the EPA manuals "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms " (EPA/600/R-95/136).

2.1 Receipt and Handling of the Effluent Samples

On February 17, 19 and 21, samples of Anchorage effluent were collected into appropriately cleaned sample containers; these samples were shipped via overnight delivery, on ice and under chain-of-custody, to the PER testing facility in Fairfield, CA. Upon receipt at the testing laboratory, aliquots of the samples were collected for determination of initial water quality characteristics (Table 1), after which the remainder of the sample was stored at 0-6°C, except when being used to prepare the test solutions. The chain-of-custody record for the collection and delivery of the samples are provided in Appendix A.

,	Table 1. Initial water quality characteristics of the Anchorage effluent sample.							
							Total Ammonia (mg/L N)	
2/17/14	2/18/14	MOA14TOX001	1.7	7.32	6.0	0.4	754	24.7
2/19/14	2/20/14	MOA14TOX002	1.4	7.25	6.8	0.4	773	25.8
2/21/14	2/22/14	MOA14TOX003	3.3	7.32	5.6	0.4	782	27.6

2.2 Echinoderm Fertilization Toxicity Testing with Strongylocentrotus purpuratus

The short-term chronic echinoderm sperm cell fertilization test consists of a bioassay in which purple sea urchin or sand dollar sperm are exposed to a series of effluent dilutions, and the subsequent effects on successful fertilization of the eggs determined. The specific procedures used in this test are described below.

The Lab Water Control medium for this test consisted of filtered (1 μ m) seawater (collected from the UC Granite Canyon Marine Lab). The Lab Water Control medium and effluent sample were used to prepare test solutions at concentrations of 0.175, 0.35, 0.7, 1.4, and 2.8% effluent. Routine water quality characteristics (pH, D.O., and salinity) were measured for each test solution prior to use in this test.

Sperm and eggs were generated from gravid adult purple urchins, *S. purpuratus*. The gravid adult urchins were obtained from a commercial supplier (David Gutoff, San Diego, CA). Upon receipt at the PER lab, the urchins were held in tanks of aerated, filtered seawater at 12°C. Spawning of the urchins was induced by injection with 0.5 M KCl, followed by vigorous shaking of the animals to stimulate gamete release, as per EPA guidelines. The gametes from each spawning individual were collected and examined microscopically; the gametes exhibiting the best quality (as determined from morphology and trial fertilization) were pooled to provide a composite of high quality sperm and a composite of high quality eggs.

Each test replicate consisted of a 30-mL glass vial to which 5 mL of appropriate test solution was added. The test was initiated with the inoculation of an appropriate quantity of sperm into each replicate vial to achieve a final sperm-to-egg ratio of 500:1. After a 20-min exposure period, ~1000 eggs were inoculated into each vial. After an additional 20-min exposure, the test was terminated with all of the test embryos being fixed by the addition of 1.0 mL of 5% glutaraldehyde.

The contents of each preserved test vial were subsequently examined microscopically to determine the percentage of embryos exhibiting complete fertilization. The resulting percentage fertilization data for each test treatment were analyzed in order to characterize any statistically significant reductions in successful fertilization that may have been caused by the effluent; determinations of the key statistical endpoints were made using the CETIS® statistical software.

2.2.1 Reference Toxicant Testing of the Purple Urchins

In order to assess the sensitivity of the urchin sperm to toxicant stress, a reference toxicant test was performed concurrently with the effluent test. The reference toxicant test was performed similarly to the effluent test, but used test solutions consisting of Lab Water Control medium spiked with KCl at concentrations of 0.25, 0.5, 1, 2, and 4 g/L KCL. The resulting test response data were analyzed to determine key dose-response point estimates (e.g., EC50); all statistical

analyses were made using the CETIS® software. These response endpoints were then compared to the "typical response" range established by the mean \pm 2 SD of the point estimates generated by the reference toxicant test database.

2.3 Bivalve Embryo Development Toxicity Testing with Mytilus galloprovincialis

The short-term chronic bivalve embryo development test consists of a ~48 hr bioassay in which mussel (*M. galloprovincialis*) embryos are exposed to a series of effluent dilutions, and the effects on embryo development determined. The specific procedures used in this test are described below.

The Lab Water Control medium for this test consisted of 1- μ m filtered seawater (collected from the UC Granite Canyon Marine Laboratory) diluted to a salinity of ~30 ppt with Type 1 lab water (reverse-osmosis, de-ionized water). The Lab Water Control medium and effluent sample were used to prepare a dilution series of treatment test solutions at test concentrations of 0.175, 0.35, 0.7, 1.4, and 2.8% effluent. Routine water quality characteristics (pH, D.O., and salinity) were measured for each test solution prior to use in this test.

Bivalve embryos were generated from gravid adult *M. galloprovincialis*. Prior to spawning, the adult bivalves were held in seawater at a temperature of 12°C. To induce spawning, the adults were placed into glass trays of clean seawater (filtered Granite Canyon seawater) at 20°C. This increase in temperature induced the bivalves to release sperm and eggs. When an individual was observed to begin releasing sperm or eggs, it was transferred to a separate container for isolation and collection of gametes, which were examined microscopically to evaluate viability and quality. The gametes exhibiting the best quality were used to prepare freshly fertilized embryos.

Each test replicate consisted of a 30-mL glass vial containing 10 mL of appropriate test solution. Additional replicates were also established to verify the inoculation density, and additional "observation" vials were established at the natural seawater Lab Control treatment for monitoring of successful embryo development (i.e., to allow monitoring of the test conditions without affecting actual test replicates). Finally, "water quality" vials (30-mL vials containing 20 mL of test solution at the same embryo density as the test vials) were established for each treatment in order to measure the final (~48 hrs) water quality characteristics.

The test was initiated with the random inoculation of approximately 150-300 embryos into each vial. These test, observation, and monitoring vials were then placed into a temperature-controlled incubator at 18°C under a 16L:8D photoperiod.

After 48 (±1) hrs, the "observation" vials were examined to ensure that ≥90% of the surviving embryos achieved normal development to the "D-hinge" stage. Upon confirming adequate successful embryo development, it was assumed that similar conditions existed for the test Lab

Control replicates, and the test was terminated. The final water quality characteristics were determined from the "water quality" vial at each treatment, and the remaining test embryos were fixed by the addition of 1 mL of 5% glutaraldehyde to each replicate vial. The contents of each preserved test vial were subsequently examined microscopically to determine the percentage of embryos exhibiting normal development. The resulting embryo development data were analyzed to evaluate any impairments due to the effluent; all statistical analyses were performed using the CETIS® statistical software.

2.3.1 Reference Toxicant Testing of the Mytilus galloprovincialis

In order to assess the sensitivity of the mussel embryos to toxic stress, a reference toxicant test was performed. This reference toxicant test was performed similarly to the effluent toxicity test, except that test solutions consisted of Lab Water Control medium (30 ppt seawater) spiked with KCl at concentrations of 0.5, 1, 2, 3, and 4 g/L. The resulting test response data were analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the "typical response" range established by the mean ± 2 SD of the point estimates generated by the reference toxicant test database

2.4 Survival and Growth Toxicity Testing with Topsmelt (Atherinops affinis)

The short-term chronic topsmelt test consists of exposing larval fish to a series of effluent dilutions for 7 days, after which effects on survival and growth are evaluated. The specific procedures used in this test are described below.

The larval topsmelt used in this test were obtained from a commercial supplier (Aquatic Biosystems, Fort Collins, CO). Upon receipt at the testing lab, the larval fish were maintained in a tank containing aerated Lab Water Control medium. The fish were fed brine shrimp nauplii *ad libitum* during the pre-test holding period.

The Lab Water Control medium for this test consisted of Type 1 water (reverse-osmosis, deionized water) diluted to a salinity of 25 ppt using an artificial sea salt (Crystal Sea Salt[®]-bioassay grade). Aliquots of the effluent were similarly adjusted to 25 ppt using the same sea salt. The Lab Water Control medium and effluent were used to prepare daily test solutions at concentrations of 0.175, 0.35, 0.7, 1.4, and 2.8% effluent. "New" water quality characteristics (pH, D.O., and salinity) were measured on these test solutions prior to use in the test.

There were 5 replicates each for the each treatment, each replicate consisting of 400 mL of test media in a 600-mL glass beaker. The test was initiated by randomly allocating five 12-day old topsmelt into each replicate beaker. The beakers were randomly positioned in a temperature-controlled room at 20°C (with temperature being monitored daily), under a 16L:8D photoperiod. These test fish were fed brine shrimp nauplii twice daily.

Each day of the test, fresh test solutions were prepared as before. The test replicate beakers were examined, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the test media in each beaker was carefully poured out and replaced with fresh media. "Old" water quality characteristics (pH, D.O., and salinity) were measured on the old test water collected from one randomly selected replicate at each treatment. The test beakers were then placed back into the temperature-controlled room.

After 7 days exposure, the test was terminated and the number of live fish in each replicate beaker was recorded. The fish from each replicate were then carefully euthanized in methanol, rinsed in de-ionized water, and transferred to a pre-dried and pre-tared weighing pan. The fish were then dried at 100°C for >24 hrs and re-weighed to determine the total weight of fish in each replicate; the total weight was then divided by the initial number of fish per replicate (n=5) to determine the "biomass value". The resulting survival and growth (biomass value) data were analyzed to determine any impairment(s) caused by the effluent; all statistical analyses were performed using the CETIS® statistical software.

2.4.1 Reference Toxicant Testing of the Topsmelt

In order to assess the sensitivity of the fish test organisms to toxic stress, a reference toxicant test was performed concurrently with the effluent test. The reference toxicant test was performed similarly to the effluent test, but uses test solutions consisting of Lab Water Control medium spiked with KCl at concentrations of 0.25, 0.5, 0.75, 1.0, 1.25 g/L . The resulting test response data were analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the 'typical response' range established by the mean \pm 2 SD of the point estimates generated by the most recent previous reference toxicant tests performed by this lab.

3. RESULTS

3.1 Effects of Anchorage Effluent on Purple Urchins

The results of this test are summarized below in Table 2. The normal embryo fertilization NOEC was 1.4% effluent, resulting in 71.4 TUc (where TUc = 100/NOEC). The test data and summary of statistical analyses for this test are presented in Appendix B.

Table 2. Effects of Anchorage effluent on echinoderm (purple urchin) sperm fertilization.					
Effluent Treatment	Mean % Successful Fertilization				
Lab Control (Filtered Seawater)	99.5				
0.175%	100				
0.35%	99.8				
0.7%	99.8				
1.4%	100				
2.8%	87.8*				
Summary of	Key Statistics				
NOEC =	1.4% effluent				
TUc (where TUc = 100/NOEC) =	71.4				
EC15 =	>2.8% effluent				
EC25 =	>2.8% effluent				
EC40=	>2.8% effluent				
EC50 =	>2.8% effluent				

^{* -} The response at this test treatment was significantly less than the Lab Control treatment response at p < 0.05.

3.1.1 Reference Toxicant Toxicity to the Purple Urchin

The results of this test are summarized below in Table 3. The ECso for this test was consistent with the "typical response" range established by the reference toxicant database for this species, indicating that these organisms were responding to toxic stress in a typical and consistent fashion. The test data & summary of statistical analyses for this test are presented in Appendix C.

Table 3. Reference toxicant testing: Effects of KCl on purple urchin sperm fertilization.					
KCl Treatment (g/L)	Mean % Normal Fertilization				
Lab Control	100				
0.25	100				
0.5	100				
1	94.0*				
2	52.5*				
4 0*					
Summary of Key Statistics					
EC50 = 1.5 g/L KCl					

^{* -} The response at this test treatment was significantly less than the Lab Control treatment response at p < 0.05.

3.2 Effects of Anchorage Effluent on Mytilus galloprovincialis

The results for this test are summarized below in Table 4. The normal embryo development NOEC was 2.8% effluent, resulting in 35.7 TUc (where TUc = 100/NOEC). The test data and summary of statistical analyses for this test are attached as Appendix D.

Table 4. Effects of Anchorage effluent on Mytilus galloprovincialis embryo development.					
Effluent Treatment	Mean % Normal Embryo Development				
Lab Water Control (Seawater @ 30 ppt)	99.6				
0.175%	99.4				
0.35%	98.6				
0.7%	98,9				
1.4%	99.1				
2.8%	98.8				
Summary of	Key Statistics				
NOEC =	2.8% effluent				
TUc (100/NOEC) =	35.7				
EC15 =	>2.8% effluent ^a				
EC25 =	>2.8% effluent ^a				
EC40 =	>2.8% effluent ^a				
EC50 =	>2.8% effluent ^a				

a - Due to the absence of significant impairment, the EC point estimates could not be calculated, but can be determined by inspection to be >2.8% effluent.

3.2.1 Reference Toxicant Toxicity to Mytilus galloprovincialis

The results of this test are summarized below in Table 5. The EC50 for this test was consistent with the "typical response" range established by the reference toxicant test database for this species, indicating that the organisms used in this testing were responding to toxic stress in a typical fashion. The test data and summary of statistics for this test are attached as Appendix E.

Table 5. Reference toxicant testing: Effects of KCI on mussel embryo development.					
KCl Treatment (g/L)	Mean % Normal Embryo Development				
Lab Water Control	98.9				
0.5	99.7				
1	99.9				
2	98.8				
3	0*				
4	0*				
Summary of Key Statistics					
EC50 =	2.4 g/L KCl				

^{* -} The response at this test treatment was significantly less than the Lab Control treatment response (p < 0.05).

3.3 Effects of Anchorage Effluent on Topsmelt

The results of this test are presented in Table 6. There were <u>no</u> significant reductions in survival or growth at the Anchorage effluent concentrations tested; the NOEC was 2.8% effluent for both test endpoints, resulting in 35.7 TUc (where TUc = 100/NOEC). The test data and the summary of statistical analyses for this test are attached as Appendix F.

Table 6. Effects of Anchorage effluent on topsmelt survival and growth.						
Effluent Treatment	Mean % Survival	Mean Biomass Value (mg)				
Lab Water Control	100	1.56				
0.175%	100	1.14 ^b				
0.35%	100	1.39				
0.7%	100	1.28				
1.4%	100	1.28				
2.8%	100	1.26				
S S	ummary of Key Statistics					
NOEC =	2.8% effluent	2.8% effluent				
TUc (100/NOEC) =	35.7	35.7				
Survival EC15 or Growth IC15 =	>2.8% effluent ^a	>2.8% effluent				
Survival EC25 or Growth IC25 =	>2.8% effluent ^a	>2.8% effluent				
Survival EC40 or Growth IC40 =	>2.8% effluent ^a	>2.8% effluent				
Survival EC50 or Growth IC50 =	>2.8% effluent ^a	>2.8% effluent				

a - Due to the absence of significant mortalities, the EC point estimates could not be calculated, but can be determined by inspection to be >2.8% effluent.

b - There was an interrupted concentration-response, with an indication of a statistically significant reduction in test response at this test treatment; however, the absence of statistically significant reductions at the higher effluent concentrations indicates that the reduction observed at this treatment is not toxicologically significant.

3.3.1 Reference Toxicant Toxicity to Topsmelt

The results of this test are summarized below in Table 7. The EC50 and IC50 for this test were consistent with the "typical response" ranges established by the reference toxicant test database for this species, indicating that the organisms used in these tests were responding to toxic stress in a typical fashion. The test data and summary of statistics for this test are attached as Appendix G.

Table 7. Reference toxicant testing: Effects of KCl on topsmelt.						
KCl Concentration (g/L)	Mean Biomass Value (mg)					
Lab Water Control	100	1.39				
0.25	100	1.38				
0.5	100	1.33				
0.75	100	1.25				
1	24*	0.24				
1.25	-					
.						
Survival EC50 or Growth IC50 =	0.92 g/L KCl	0.89 g/L KCl				

^{* -} The response at this test treatment was significantly less than the Lab Control treatment response (p < 0.05).

4. SUMMARY AND CONCLUSIONS

Chronic Effects of Anchorage Effluent on Purple Urchin Sperm Fertilization

There were significant reductions in successful fertilization at the 2.8% effluent concentration tested; the NOEC was 1.4% effluent, resulting in 71.4 TUc.

Chronic Effects of Anchorage Effluent on *Mytilus galloprovincialis* Embryo Development There were <u>no</u> significant reductions in normal embryo development at the any of effluent concentrations tested; the NOEC was 2.8% effluent, resulting in 35.7 TUc.

Chronic Effects of Anchorage Effluent on Topsmelt (*Atherinops affinis***)**

There were <u>no</u> significant reductions in survival or growth at the any of effluent concentrations tested; the NOEC was 2.8% effluent for both test endpoints, resulting in 35.7 TUc.

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The test organism responses at the Lab Control treatments were within acceptable limits.

Positive Control – The reference toxicant test results for all three species were within the "typical response" ranges established by the respective reference toxicant test databases for these species, indicating that these test organisms were responding to toxicant stress in a typical and consistent fashion.

Concentration Response Relationships – The concentration-response relationships for these tests were evaluated as per EPA guidelines (EPA-821-B-00-004), and were determined to be acceptable.

Appendix A

Chain-of-Custody Records for the Collection and Delivery of the Anchorage Effluent Samples

KINNETIC LABORATORIES, INC. CHAIN OF CUSTODY RECORD

LABORATORY			FROM:	ani Suka da			
ATTN: Scott Ogle 707-207-7760 Pacific EcoRisk 2250 Cordelia Rd.			Kinnetic Laboratories, Inc. 704 W. 2 nd Ave Anchorage, AK 99501 Attn: Gary Lawley 907.276.6178				
Required Completion D	oate: ASAP		P.O. #:AK14-1000	P.O. #:AK14-1000 KLI Proj. #: 516.03			
ANALYSIS TYPE: Static renewal chronic testing using 1) Atherinops affinas (Topsmelt), survival and growth test, 2) Mytilus spp., survival and growth test, and 3)Stronglocentruss purpuratus (Purple urchin) fertilization test. Test following procedures in accordance with Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Esturine Organisms, (EPA/600/4-87/028). At least five dilutions must be tested, including a ZID boundary concentration of 0.70%, two concentrations below 0.70% (0.35 and 0.175) and two concentrations above (1.4 and 2.8%).							
Preservative: N			one (4º C)	Type of Contain	ner: 1 gallon cubitainer		
SAMPLE IDENTIFICATION #	NO. OF CONTAINERS	SAMPLE DATE	SAMPLE TIME	CONDITION UPON RECEIPT	ASSIGNED LABORATORY NUMBER		
MOA14TOX001	1	2/17/14	0600				
			·				
DATA REPORTS MUST INC EXTRACTION/DATE OF AN	LUDE THE FOLLOW ALYSIS, ANALYTIC	 VING: SAMPLE ID:NUN AL RESULTS; AND SIG	 BER, ANALYTIGAL ME' NATURE OF QA REVIE	 	MIT, DATE OF		
COMMENTS: Please return	all completed origin	al COCs to KLI Anchorag	je.				
RELINGUISHED BY	DATE A	NO TIME TRANSP	ORTEDBY RECEIV	(ED BY	2/18/14 III5		
			ORTED BY: RECEN	/EDBY/	DATE AND TIME		
SHEET AND THE SAME				/PR A1:			
<u> PRELINQUISHED BY:</u>	PATEA	ND TIME TRANSPI	PRIED BY: REGEN	CD BY:	DATE AND TIME		

SAMPLED BY (NAME/SIGNATURE):

KINNETIC LABORATORIES, INC. CHAIN OF CUSTODY RECORD

LABORATORY;			FROM:			
ATTN: Scott Ogle 707-207-7760 Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534			Kinnetic Laboratories, Inc. 1102 West 7th Avenue Anchorage, AK 99501 Attn: Gary Lawley 907.276.6178			
Required Completion I	Date: ASAP		P.O. #: AK14-100	0	KLI Proj. #: 516,03	
fer the (E of	rtilus spp., surviv tillzation test. Te e Chronic Toxicit PA/600/4-87/028	al and growth test, a est following procedu y of Effluents and Ro). At least five diluti	and 3)Stronglocentroures in accordance veceiving Waters to I one must be tested,	uss purpuratus (Pu with Short Term M Marine and Esturin , including a ZID be	urple urchin) lethods for Estimating	
		Preservative: No	one (4ºC)	Type of Contain cubitainer	ner: 2.5 gallon	
SAMPLE IDENTIFICATION #	NO. OF CONTAINERS	SAMPLE DATE	SAMPLE TIME	CONDITION UPON RECEIPT	ASSIGNED LABORATORY NUMBER	
MOA14TOX002	1	2/19/14	0900			
	<u> </u>		<u> </u>			
				-		
		11.				
DATA REPORTS MUSTING EXTRACTION, DATE OF AN	MINION AND AND	AL CHOLOUS CURIORS			MIT, DATE OF	
COMMENTS: Please return	all completed origina	al COCs to KLI Anchorag	re.			
RELINGUISHED BY:	DATEA	ND TIME TRANSPO	RTED BY: REGELV	/EID/BY(DATE AND TIME	
Ah.	2/1	9/1/740 Fr	142		M 2/20/14 104	
KELINQUISHED (1)	DATEIA	KOTIME TRANSPO	REGEIV	/ED/BY:	DATE AND TIME	
RELINQUISHED BY:	DATEA	ND TIME TRANSPO	ORTED BY) RECEIV	(EDBY:	DATE AND TIME	
		<u> </u>				
SAMPLED BY (NAME/SIGNAT	TURE):	h/				

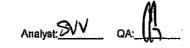
KINNETIC LABORATORIES, INC. CHAIN OF CUSTODY RECORD

LABORATORY			FROM:				
ATTN: Scott Ogle 707-207-7760 Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534			1102 Wes	Kinnetic Laboratories, Inc. 1102 West 7th Avenue Anchorage, AK 99501 Attn: Gary Lawley 907.276.6178			
Required Completion	Date: ASAP		P.O. #: Ak	(14-1000)	KLI Proj. #: 516.03	
fe th (E of	<i>ytilus spp.</i> , surviv rtilization test. Te e <i>Chronic Toxici</i> t <u>'</u> PA/600/4-87/028	al and growth test est following proce y of Effluents and). At least five dilu	, and 3)Strong dures in acco Receiving Wa itions must be	glocentru rdance v iters to M e tested,	uss purpuratus (Pu vith Short Term M Marine and Esturin including a ZID be	urple urchin) lethods for Estimating	
		Preservative: I	None (4 ⁰ C)		Type of Contail	ner: 1 gallon cubitainer	
SAMPLE IDENTIFICATION #	NO. OF CONTAINERS	SAMPLE DATE	SAMPLE	TIME	CONDITION UPON RECEIPT	ASSIGNED LABORATORY NUMBER	
MOA14TOX003	1	2/2//14	0855	7			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
DATA REPORTS MUST IN EXTRAGTION, DATE OF A	CLUDE THE FOLLOW NALYSIS, ANALYTIC	VING: SAMPLE ID NI AL RESULTS, AND S	IMBER, ANALYT GNATURE OF G	ICAL MET NA REVIEL	PHOD, DETECTION L MER.	IMIT, DATE OR	
COMMENTS: Please retur		van saar saar gemeen saar saar saar saar saar saar saar saa	rage. PORTED BY:	RESEIV	CA BV	DATE AND TIME	
Hu	$-\frac{2}{2}$	1 12 15	ed Fix	Hu	u Bardes	FOUR 2/22/14 1245	
RELINQUISHED AY	BATE A	<u>ND TIME TRANS</u>	PORTED BY:	YRECEIV	/ED BY:	DATE AND TIME	
BELINGUISHED BY	DATE	ND TIME TRANS	PORTED BY:	RECEIV	/ED BY:	DATE AND TIME	
SAMPLED BY (NAME/SIGNA	ATURE):	lu		<u> </u>			

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Anchorage Effluent to Purple Urchin Sperm Fertilization

CETIS Summary Report


Report Date:

18 Feb-14 17:45 (p 1 of 1)

Test Code:

55115 | 16-6525-4287

								ı	est Cod	e:		00110	16-6525-428
Echinoid Fert	ilization Test											Pa	cific EcoRisk
Batch ID: Start Date: Ending Date: Duration:	18-0678-1680 18 Feb-14 15:46 18 Feb-14 16:26 40m	; ;	Test Type: Protocol: Species: Source:	Fertilization EPA/600/R-95/136 (1995) Strongylocentrotus purpuratus Gutoff			I E	Analyst: Stevi Vasquez Diluent: Filtered Sea Wi Brine: Not Applicable Age: NA		ered Sea Wa Applicable	ter		
,	21-4061-0777 17 Feb-14 06:00 : 18 Feb-14 11:15 34h (1.7 °C)) <u> </u>	Code: Vlaterial: Source: Station:		t	torles, Inc.			Client: Project:	Kin 220	netic Labs		
Comparison 8	Summary	·······										<u> </u>	, .
Analysis ID	Endpoint		NOEL	. LC	DEL	TOEL	PMSD	TU	Me	thod			
12-0486-3237	Fertilization Rate	€	1.4	2.8	8	1.98	3.28%	71.43	Ste	el Ma	ny-One Rank	Sum T	est
Point Estimat	e Summary								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Analysis ID	Endpoint		Level	%	ı	95% LCL	95% UCL	TU	, Me	thod			
01-1296-0437		8	EC5 EC10	1.5 2.5	98 56	1.59 1.78	N/A N/A	50.51 39.07	. '	ear Int	erpolation (I	CPIN)	
			EC15 EC20	>2		N/A N/A	N/A N/A	<35.7 <35.7	1				
			EC25		2.8	N/A	N/A	<35.7					
			EC40			n/a n/a	N/A	<35.7					
			EC50		2.8	N/A	N/A	<35.7	,		/		
	Rate Summary	<u>.</u> .					***				04.17	20.45 /	ormer
C-%	Control Type Lab Water Contr	Count	: Mean 0.995		5% LCL 993	95% UCL 0.997	Min 0.99	Max 1		d Err 10289	O.00577	CV% 0.58%	%Effect 6 0.0%
0.175	Cap Avaies Colli	4	1	1	885	1	1	1	0.0	0203	0.00377	0.0%	-0.5%
0.35		4	0.998		996	0.999	0.99	1	_	025	0.005	0.5%	-0.25%
0.7		4	0.998	0,	996	0.999	0.99	1	0.0	025	0.005	0.5%	-0.25%
1.4		4	1	1		1	1	1	0		0	0.0%	-0.5%
2.8		4	0.878	0.	84	0.915	0.79	0.97	0.0)506	0.101	11.59	6 1,1.8%
Fertilization F	Rate Detail					-							
C-%	Control Type	Rep 1	Rep 2	Re	ер 3	Rep 4							
0	Lab Water Contr	1	0.99	1		0.99							
0.175		1	1	1		1							
0.35		0.99	1	1		1							
0.7		1	1	0.	99	1							
1.4		1	1	1 -		1							
2.8		0.96	0.79	0,	79	0.97							
Fertilization R	Rate Binomials												
C-%	Control Type	Rep 1	Rep 2		ер 3	Rep 4							
0	Lab Water Contr				00/100	99/100							
0.175		100/10			00/100	100/100							
0.35		99/100			00/100	100/100							
0.7		100/10			9/100	100/100							
1.4		100/10			00/100	100/100							
2.8		96/100	79/10	υ 79	9/100	97/100							

Report Date: Test Code:

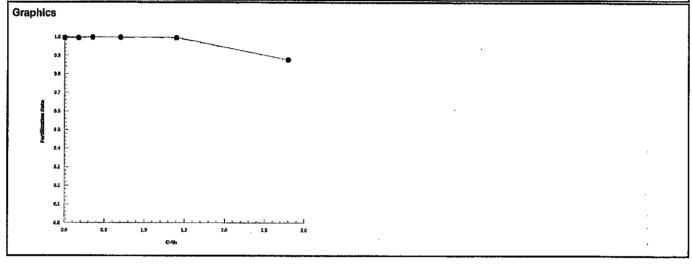
18 Feb-14 17:45 (p 1 of 2) 55115 | 16-6525-4287

			Tool oods:	00110 10 0020 1201
Fertilization	ı Test			Pacific EcoŖisk
ID: 12.04	6 3227 Endnoi	nt: Earlibration Pata	CETIS Version:	CETISM 8.5

								lesi	Code:		201101	0-0020-42
Echinoid Fert	ilization Test										Pac	ific EcoŖis
Analysis ID: Analyzed:	12-0486-3237 18 Feb-14 17:			rtilization Ra nparametric		vs 1	reatments		IS Version: cial Results:	CETISv1 Yes	8.5	
Data Transfor	m	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	cted)	NA	C>T	NA	NA			3.28%	1.4	2.8	1.98	71.43
Steel Many-Or	e Rank Sum T	est		, 						· 		
Control	vs C-%		Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(a:5%)		
Lab Water Con	trol 0.175		22	10	2	6	0.9908	Asymp	Non-Signif	icant Effect		
	0.35		20	10	3	6	0.9516	Asymp	•	icant Effect		
	0.7		20	10	3	6	0.9516	Asymp	_	icant Effect		
	1.4		22	10	2	6	0.9908	Asymp	_	icant Effect		
	2,8*		10	10	ō	6	0.0417	Asymp	Significant			
ANOVA Table						-						
Source	C C	####	liioon Ga	1070	DF		E 64m4	D Velue	Doolalant	E0/ \		
Between	Sum Squ 0.2480599		Mean Squ		5		F Stat	P-Value 0.0001	Decision(
*			0.0496119				9.95	0.0007	Significant	Effect		
Error	0.0897832		0.0049879	101	18 23		_					
Total	0.3378431	l 			23							
Distributional '	Tests		:	•		•						
Attribute	Test			Test Stat	Critica	1	P-Value	Decision	(a:1%)			
Variances			y of Variance	51.3	4.25		<0.0001	Unequal V	/arlances			
Variances	Levene E	quality of \	/ariance	164	4.25		< 0.0001	Unequal \	/ariances			
Distribution	Shapiro-V	Vilk W Nor	mality	0.797	0.884		0.0003	Non-norm	al Distribution	n		
Fertilization Ra	ete Summary											
C-%	Control Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effec
) 1	ab Water Cont	г 4	0.995	0.986	1		0.995	0.99	1	0.00289	0.58%	0.0%
0.175		4	1	1	1		1	1	1	0	0.0%	-0.5%
0,35		4	0.998	0.99	1		1	0.99	1	0:0025	0.5%	-0.25%
0,7		4	0.998	0.99	1		1	0.99	1	0.0025	0.5%	-0.25%
1.4		4	1	1	1		1	1	1.	0	0.0%	-0.5%
2.8		4	0.878	0.717	1		0.875	0.79	0.97	0.0506	11.5%	11.8%
Angular (Corre	cted) Transfori	ned Sum-										7.1.070
	Control Type	Count	Mean	95% LCL	95% U	CI.	Median	Min .	Max	Std Err	CV%	%Effec
	ab Water Cont		1.5	1.45	1.54	<u> </u>	1.5	1.47	1.52	0.0145	1.94%	0.0%
).175	WD AARIGI OOISE	4	1.52	1.45	1.52		1.52	1.47		0.0145		
).175).35		4							1.52	=	0.0%	-1.68%
),7		-	1.51	1.47	1.55		1.52	1.47	1.52	0.0125	1.66%	-0.84%
		4	1.51	1.47	1.55		1,52	1.47	1.52	0.0125	1.66%	-0.84%
1.4		4	1.52	1.52	1.52		1.52	1,52	1.52	0	0.0%	-1.68%
2.8		4	1.24	0.973	1.5		1.23	1.09	1.4	0.0834	13.5%	17.2%

CETIS Analytical Report

Report Date:


18 Feb-14 17:45 (p 1 of 1) 55115 | 16-6525-4287

Test Code:

Echinold Fert	ilization Test					Pacific EcoRisk
Analysis ID:	01-1296-0437	Endpoint:	Fertilization Rate	CETIS Version:	CETISv1.8.5	,
Analyzed:	18 Feb-14 17:45	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes	

Linear	Interpola	ation Options					·	
X Trans	sform	Y Transform	See	d F	Resamples	Exp 95% CL	Method	
Linear		Linear	2026	224 2	00	Yes	Two-Point Interpolation	
Point E	Stimates	3						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC5	1.98	1.59	N/A	50.51	NA	62.91		
EC10	2.56	1.78	N/A	39.07	NA	56.21		
EC15	>2.8	N/A	N/A	<35.71	NA	NA	•	
EC20	>2.8	N/A	N/A	<35.71	NA	NA		
EC25	>2.8	N/A	N/A	<35.71	NA	NA		
EC40	>2.8	N/A	N/A	<35.71	NA	NA		
EC50	>2.8	N/A	N/A	<35.71	NA	NA		

Fertilizat	tion Rate Summary		Calculated Variate(A/B)								•
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Water Contr	4	0.995	0.99	1	0.00289	0.00577	0.58%	0.0%	398	400
0.175		4	1	1	1	0	0 .	0.0%	-0.5%	400	400
0.35		4	0.998	0.99	1	0.0025	0.005	0.5%	-0.25%	399	400
0.7		4	0.998	0.99	1	0.0025	0.005	0.5%	-0.25%	399	400
1.4		4	1	1	1	0	0 .	0.0%	-0.5%	400	400
2.8		4	0.878	0.79	0.97	0.0506	0.101	11.5%	11.8%	351	400

Echinoderm Fertilization Toxicity Test Data Sheet

Client:	Kinnetic Anchorage	Test Start Date: _	R
Test Material:	Effluent	Test End Date:	- 8
Test Species:	S. purpuratus	Enumeration Date:	6
Test ID #:	55115	Investigator:	
Project #	22017	- -	

Sample Salinity	adjusted w	/tin:			
Concentration	Replicate	Number of Fertilized Eggs	Number of Unfertilized Eggs	Total Number of Eggs	Percent Fertilization
,	А	100	0	100	(00)
Control	В	99	1	(00)	99
Control	С	106	0	100	100
	D	99	1	100	99
	Α	100	0	100	१७०
0.175%	В	100	0	(00)	100
0.17576	С	100	Ó	(00)	100
	D	100	0	(00)	100
	Α	99		୯୦୬	99
0.35%	В	(00)	0	(00)	(00
0,35 /0	С	100	0	ι00	100
	D	100	0	OOJ	(00)
	Α	100	0	(00)	100
0.7%	В	(00)	0	100	100
U. 1 70	С	99		(00	99
	D	(OO)	Ð	100	100
	А	100	0	(00	100
1.4%	В	100	0	(00)	100
1.4 /0	С	100	0	(00)	100
	D	100	0	100	100
	Α	96	4	100	96
2.8%	В	79	21	100	79
4.8%	С	79	21	100	79
	D	97	3	100	97

Echinoderm Fertilization Toxicity Test Water Chemistry Data

Client:	K	Cinnetic Anchorage	·	Organism Log#: _	7968	_ Age: _	N/A
Test Material:		Effluent		Organism Supplier:	M-	· Rep	
Test Species_		S. purpuratus		Control/Diluent:		FSW'	
Test ID#:	55115	Project #:	22017	Test Date:	2/18/14	Randomization:	
Sample Salinity adj	usted with :	Later		,			

Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	11.3	7.77	8.8	33.6	Date: 2/18/14
0.175%	11.3	7.79	8.8	33.6	Sample ID: 34100
0.35%	11,3	7.79	8.9	33.6	Test Solution Bren:
0.7%	11.3	7.79	8.8	33.7	New WQ: CJD
1.4%	11.3	7.78	8.8	33.4	Innoculation Time: 1546
2.8%	11.3	7.76	8.7	33·0	Innoculation Signoff
Meter ID	78A	PHIS	RDOH	EC04	

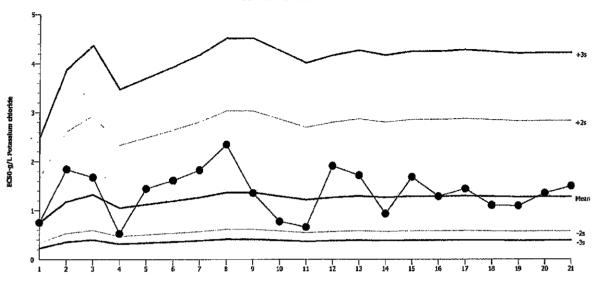
Appendix C

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Purple Urchin Sperm

CETIS Summary Report

Report Date: Test Code:

18 Feb-14 17:50 (p 1 of 1)


55118 | 13-4044-9511

Echinoid For	tilization Test							Test Code		- · · · · · · · · · · · · · · · · · · ·		fic EcoRisk
			·					·····			Paci	IIC ECURISK
Batch ID:	10-7994-3253		Test Type:	Fertilization EPA/600/R-95/136 (1995)				Analyst:	vi Vasquez			
Start Date:	18 Feb-14 15:4		Protocol: Species:	Strongylocentrotus purpuratus				Diluent:		ered Sea Wa	ater	
Ending Date: Duration:	18 Feb-14 16:2 40m		Source:	Dave Gutoff	otus purpura	tus		Brine:	NOT NA	Applicable		
	4011		Source:					Age:	NA			
Sample ID:	05-9833-4304		Code:	KCI				Client:		erence Toxic	cant	
•	: 18 Feb-14 15:4		Material:	Potassium chic				Project:	220	18		
	: 18 Feb-14 15:4		Source:	Reference Toxi	cant							
Sample Age:	NA (11.3 °C)		Station:	in House								
Comparison	Summary											
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Met	hod			
20-7403-1605	Fertilization Rat	te	0.5	1	0.7071	2.68%		Ste	el Mar	ny-One Rank	Sum Tes	t
Point Estimat	te Summary											
Analysis ID	Endpoint		Level	g/L	95% LCL	95% UCL	TU	Met	hod			
15-4518-0369	Fertilization Rat	le	EC5	0.917	0.64	1.1		Line	ar Int	erpolation (le	CPIN)	***************************************
			EC10	1.05	0,953	1.11						
			EC15	1.1	1.03	1.17						
			EC20	1.16	1.09	1.22						
I			EC25	1.21	1.14	1.27						
			EC40 EC50	1.38 1.5	1.32	1.44						
			E030	1,0	1.44	1.55						
	Rate Summary											
C-g/L	Control Type	Coun		95% LCL	95% UCL	Min	Max		Err	Std Dev	CV%	%Effect
0	Lab Water Conti	_	1	1	1	1	1	0		0	0.0%	0.0%
0.25 0.5		4	1	1	1	1	1	0		0	0.0%	0.0%
1		4	1 0.94	0.92	1 0.96	1 0.87	1 0.98	0 3 0.02	264	0 0.0523	0.0% 5.56%	0.0%
2		4	0.052		0.0696	0.67	0.50	0.02		0.0523	87.1%	6.0% 94.7%
4		4	0.002.	0.0004	0.0000	0	0.1	0.02	223	0.0407	07.170	100.0%
Fertilization F	Rate Detail								 		<u> </u>	
C-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Lab Water Contr		1	1	1							
0.25		1	1	1	1							
0.5		1	1	1	1							
1		0.93	0.87	0.98	0.98							
2		0	0.08	0.03	0.1							
4		0	0	0	0							
Fertilization R	late Binomials									<u> </u>		
C-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Lab Water Contr				100/100							
0.25		100/10			100/100							
0.5		100/10			100/100							
1		93/10			98/100							
2		0/100		3/100	10/100							
4		0/100		0/100	0/100							
		100			J							

Report Date: 18 Feb-14 17:51 (1 of 1)

Pacific EcoRisk **Echinoid Fertilization Test** Organism: Strongylocentrotus purpuratus (Purpl Potassium chloride Material: Test Type: Fertilization Reference Toxicant-REF Protocol: EPA/600/R-95/136 (1995) Endpoint: Fertilization Rate Source:

Echinold Fertilization Test

1.275 20 Mean: Count: Sigma: NA CV: 48.80%

-2s Warning Limit: 0.5755 +2s Warning Limit: 2.823

-3s Action Limit: 0.3867 +3s Action Limit: 4.202

Qualit	y Con	trol Data	3								
Point	Year	Month	Day	Time	QC Data	Deita	Sigma	Warning	Action	Test ID	Analysis ID
1	2010	Apr	27	15:16	0.7522	-0.5225	-1.327	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		08-6375-6676	16-8011-5000
2	2011	Jul	5	16:59	1.841	0.5664	0.9247			12-7539-1611	11-4712-0703
3			5	16:59	1.678	0.4034	0.6915			08-6048-1952	03-9460-7936
4		Oct	14	15:51	0.5287	-0.746	-2.213	(-)		00-9189-5053	02-0698-6488
5		Dec	15	13:55	1.444	0.1698	0.3144			04-6051-4150	20-8134-1190
6	2012	Mar	8	16:22	1.61	0.3356	0.5878			05-0740-0748	15-5935-0686
7		Арг	6	15:30	1.823	0.5488	0.9005			04-2265-9762	19-9125-4309
8			25	18:20	2.342	1.068	1.53			10-8393-5625	06-2730-7786
9		Aug	10	15:00	1.354	0.07913	0.1515			01-9226-6824	09-0663-0632
10		Oct	5	17:17	0.7751	-0.4996	-1.251			13-9975-3204	21-3214-1203
11			25	17:20	0.661	-0.6136	-1.651			15-6047-1276	05-8563-4140
12	2013	Jan	31	16:20	1.905	0.6299	1.01			20-4482-2275	16-6771-7267
13		Арг	5	15:40	1.712	0.4371	0.7415			09-0614-8270	15-9800-9383
14		May	2	19:20	0.9268	-0.3479	-0.8016			10-7105-5755	13-0792-4685
15			7	15:58	1.677	0.4024	0.69			00-1706-4139	06-3677-7130
16		Aug	28	17:02	1.284	0.009512	0.0187			06-2696-3137	00-3784-6188
17		Nov	6	14:36	1.438	0.1634	0.3034			14-3825-5642	11-2685-4555
18		Dec	5	15:50	1.101	-0.1738	-0.3687			06-4350-3308	19-1664-9754
19	2014	Feb	7	14:20	1.09	-0.1845	-0.3933			11-6688-0585	16-9103-0015
20			8	18:00	1.348	0.07317	0.1404			02-9297-3328	06-5519-8625
21			18	15:47	1.496	0.2211	0.4023			13-4044-9511	15-4518-0369

Echinoderm Fertilization Reference Toxicant Test Data Sheet

Client:	Reference Toxicant	Test Start Date:	2/18/14	
Test Material:	Potassium Chloride	Test End Date:	<u> ચારામ</u>	
Test Species:	D. excentricus (S. purpuratus (circle)	Enumeration Date:	2/18/14	
Test ID #:	55118	Investigator:	811	
Project #	22018	· -		

Concentration (g/L KCl)	Replicate	Number of Fertilized Eggs	Number of Unfertilized Eggs	Total Number of Eggs	Percent Normal Fertilization	
	A	100	0	100	100	
Control	В	. 100	0	100	100	
Control	С	(00)	0	100	100	
	D	100	0	100	loo	
	A	100	0	100	100	
0.25	В	(00)	0	. 100	100	
,	С	100	D	100	. (00	
	D	(60	0	100	100	
	A	100	0	100	100	
05	В	001	0	001	100	
0.5	С	(00	٥	100	100	
	D	100	0	100	100	
	A	93	7	100	93	
1	В	87	13	(00)	87	
	С	98	2	100	98	
	D	98	2	100	98	
	A	0	100	(00)	0	
2	В	8	92	001	8	
~	С	3	97	100	3	
	D	10	90	100	D	
4	A	0	100	100	D	
	В	0	100	100	0	
	С	0	100	100	Q	
	D	0	00/	100	6	

Echinoderm Fertilization Reference Toxicant Test Water Chemistry Data

Client:	Reference Toxicant	Organism Log#: <u>7968</u>	Age: <u>N/A</u>
Test Material:	Potassium Chloride	Organism Supplier:	M-Rep
Test Species	D. excentricus (S. purpuratus (circle)	Control/Diluent:	FSW '
Test ID#:	55118 Project #: 22018	Test Date: 2/18/14	Randomization:

Treatment (g/L KCl)	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	11.3	7.72	8.9	33.7	Date: 2/18/14
0.25	11.3	7.77	8.6	34.1	Test Solution Prep:
0.5	11.3	7.79	9.0	34.3	New WQ: CJD
1	11.3	7.79	8.8	34.8	Innoculation Time: 1547
2	11.3	7.79	9.0	35.8	Innoculation Signoff
4	11.3	7.78	9.1	38.0	
Meter ID	78A	PHIS	RD04	ECOY	

Appendix D

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Anchorage Effluent to *Mytilus galloprovincialis* Embryos

Report Date: Test Code: 26 Feb-14 17:04 (p 1 of 1) 55116 | 19-5226-5569

							10	st Code:			0011011	8-0220-000
Bivalve Larva	i Survival and D	evelop	ment Test								Paci	ific EcoRisi
Batch ID: Start Date: Ending Date: Duration:	17-1143-7703 20 Feb-14 14:45 22 Feb-14 15:00 48h	5)	Test Type: Protocol: Species: Source:	Development- EPA/600/R-95 Mytilus gallopr Gutoff	/136 (1995)		Di	alyst: luent: lne: e:	Dilute	elle Fong ed Seawate applicable	er	
	14-9304-4418 19 Feb-14 09:00 20 Feb-14 10:45 30h (1.4°C)) 5	Code: Material: Source: Station:	Effluent Effluent Kinnetic Labor MOA14TOX00				ient: oject:	Kinne 22017		tories, Inc	
Comparison S	Summary					·						
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Meth	od			
05-2766-3265	Development Ra	ate	2.8	>2.8	NA	1.23%	35.71	Dunn	ett Mu	iltiple Com	parison Te	st
Development	Rate Summary											
C-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std E	Err	Std Dev	CV%	%Effect
	Lab Water Contr		0.996	0.994	0.998	0.988	1	0.002	78	0.00557	0.56%	0.0%
0.175		4 .	0.994	0.991	0.997	0.983	1	0.004	107	0.00813	0.82%	0.14%
0.35		4	0.986	0.984	0.988	0.983	0.995	0.002	87	0.00574	0.58%	0.96%
0.7		4	0.989	0.986	0.992	0.981	1	0.004	11	0.00821	0.83%	0.71%
1.4		4	0.991	0.989	0.993	0.984	0.995	0.002	62	0.00524	0.53%	0.51%
2.8		4	0.988	0.985	0.991	0.981	1	0.004	36	0.00872	0.88%	0.8%
Development !	Rate Detail											
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4					1.41		
0	Lab Water Contr	0.995	1	1	0.988							
0.175		0.995	0.983	1	1							
0.35		0.983	0.995	0.984	0.984							
0.7		0.981	1	0.989	0.985							
1.4		0.984	0.989	0.995	0.995							
2.8		0.981	1	0.982	0.988							
Development i	Rate Binomials						: - '					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	•						
	Lab Water Contr				168/170							
0.175		195/19			165/165							
0.35		170/17			183/186			•				
0.7		206/21			196/199							
1.4		184/18	37 185/18	37 197/198	192/193							•

Report Date:

26 Feb-14 17:04 (p 1 of 2)

CETIS AII	атупсат керс)rı					•	Code:			19-5226-556
Bivalve Lar	val Survival and D	evelopn	nent Test								fic EcoRisi
Analysis ID: Analyzed:	05-2766-3265 26 Feb-14 17:0		•	evelopment R arametric-Cor		itments		IS Version: cial Results:	CETISv1.	8.5	
Data Transf		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL.	TU
Angular (Cor	rected)	NA	C>T	NA	NA		1.23%	2.8	>2.8	NA	35.71
Dunnett Mul	tiple Comparison	Test	· · · · · · · · · · · · · · · · · · ·								
Control	vs C-%		Test Sta	t Critical	MISD DE	P-Value	P-Type	Decision(α:5%)		-
Lab Water C	ontrol 0.175		0.288	2.41	0.066 6	0.7350	CDF	Non-Signi	icant Effect		
	0.35		1.91	2.41	0.066 6	0.1210	CDF	Non-Signif	ficant Effect		•
	0.7		1.38	2.41	0.066 6	0.2670	CDF		ficant Effect		
	1,4		1.13	2.41	0.066 6	0.3676	CDF		licant Effect		
	2.8		1.54	2.41	0.066 6	0.2164	CDF		ficant Effect		
ANOVA Tabl	le							<u>,</u>			
Source	Sum Squa	ares	Mean Sc	uare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.0082336	12	0.001646	722	5	1.11	0.3886		icant Effect	-	
Error	0.0266516	7	0.001480	649	18		,	<u>-</u>			
Total	0.0348852	9			23			•			
Distributions	al Tests									·····	
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Bartlett E			1.45	15.1	0.9190	Equal Var	lances			
Distribution	Shapiro-V	VIIk VV N	ormality	0.966	0.884	0.5716	Normal Di	Istribution			
Developmen	t Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	ÇV%	%Effect
0	Lab Water Contr	4	0.996	0.987	1	0.998	0.988	1	0.00278	0.56%	0.0%
0.175		4	0.994	0.981	1	0.997	0.983	1	0.00407	0.82%	0.14%
0.35	•	4	0.986	0.977	0.995	0.984	0.983	0.995	0.00287	0.58%	0.96%
0.7		4	0.989	0.976	1	0.987	0.981	1	0.0041	0.83%	0.71%
1.4		4	0.991	0.982	0.999	0.992	0.984	0.995	0.00262	0.53%	0.51%
2.8		4	0.988	0.974	1	0.985	0.981	1	0.00436	0.88%	0.8%
Angular (Cor	rected) Transform	ned Sun	nmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
. 0	Lab Water Cont	4	1.51	1.45	1.56	1.52	1.46	1.54	0.0173	2.29%	`0.0%
0.175		4	1.5	1.43	1.57	1.51	1.44	1.53	0.0217	2.89%	0.52%
		4	1.46	1.41	1.5	1.44	1.44	1.5	0.0144	1.97%	3.45%
0.35						1.46	1.43	1.54	0.0228	3.1%	2.5%
		4	1.47	1.4	1.54	1.40	1.45	1,54	0.0220	0.170	Z,U70
0.35 0.7 1.4		4	1.47 1.48	1.4 1.43	1.54	1.48	1.44	1.5	0.0220	1.83%	2.03%

Mytilus sp. Development Toxicity Test Count Data

Client:	Kinnetic Anchorage		Test Start Date: _	2	120	114	
Test Material:	Effluent		Test End Date:	2/	72	14	
Test ID #:	55116	-2	Enumeration Date:	21	23	N	
Project #:	22017	~	Investigator:	Ü	4		
Sample Salinity adjuste	ed with:						

Effluent		Number of Normal		Total Number	Percent Normal
Concentration	Replicate	Larvae	Larvae	Larvae	Development
	Α	207		203	99.5
Control	В	210	0	210	100.0
	С	175	Ó	175	100.0
	D	168	Z	170	98.8
	Α `	195)	196	99.5
0.175%	В	171	3	174	98.3
0.175 70	С	153	0	153	100.0
	D	165	0	165	NO.0
	Α	170	3	173	98.3
0.35%	В	193		194	99.5
0.35%	С	181	3	134	98.4
	D	183	3	186	98.4
	À	206	4	210	98.1
0.7%	В	200	0	200	100.0
0.7 70	C	180	2	182	98.9
	D	196	3	199	98.5
	A	134	3	187	93.4
1.4%	В	185	2	187	98.9
I++ /U	C	197	1	198	99.5
	D	192	,	193	99.5
	A	205	4	Z09	98.1
2.8%	В	179	0	179	/00.0
4.0 70	C	166	3	169	98.2
ļ	D	168	2	170	98.8

Sample Salinity adjusted with:

Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	Client: Kinnetic- Anchorage		Organism Log#:	7960 Age:	N/A	
Test Material:		Effluent		Organism Supplier:	Gurolf.	
Test ID#:	<i>5</i> 5116	Project #:	22017	Control/Diluent:	Filtered Seawater @ 30 ppt	
Test Date: 2	20/14	Randomiza	tion:			

	Day 0									
Treatment (%)	Temperature (℃)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	18.5	7.74	8,4	29.4	Sample ID: 34143					
0.175	18.5	7.77	8.6	29.5	Test Solution Prep: 35					
0,35	(8.5	J748	8.5	29.4	New WQ: 33					
0.7	18.5	7-79	8.6	29.3	Innoculation Date:					
1.4	18.5	7.78	8.5	29.1	Innoculation Time: 1445					
2.8	18.5	44.6	8·6	28.4	Innoculation Signoff.					
Meter ID	69A	PI 49	ROOT	Ecoy						

	Day 1									
Treatment (%)	Temperature (°C)	РН	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	18.3				Date: 2/21/14					
0.175	18.3				Old WQ: MK					
0.35	18.3									
0.7	18.3									
1.4	18.3									
2,8	18.3									
Meter ID	694									

	Day 2									
Treatment (%)	Temperature (°C)	pH	D.O. (mg/L)	Salinity (ppt)	Signoff					
Control	18.2	7.83	7.6	29.5	Termination Date: 2/22/14					
0.175	18.2	7.8(7.6	29.2	Termination Time:					
0.35	18.2	7.84	7.7	29.6	Termination Signoff:					
0.7	18.2	7.84	7.7	29.5	Old WQ: 17-M.S.					
1.4	18.2	7.84	7.7	29.4						
2.8	18.2	7.83	7.6	29.2						
Meter ID	69A	pH19	RD:07	EC04						

Appendix E

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of *Mytilus galloprovincialis* **Embryos**

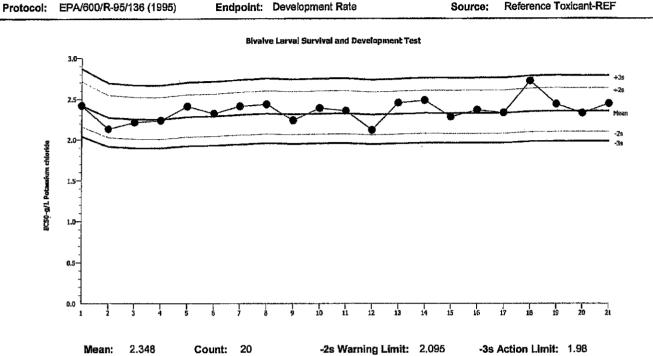
CETIS Summary Report

Report Date: 05 Mar-14 17:19 (p 1 of 1) Test Code: 55411 | 06-5660-7780 55411 | 06-5660-7780

								lest Code	•		3341110	6-5660-778
Bivalve Larv	al Survival and D	Developm	ent Test								Pacif	fic EcoRisi
Batch ID:	11-3691-3057	T	est Type:	Development-	Survival			Analyst:	Pad	rick Anders	on	
Start Date:	20 Feb-14 14:5	i0 P	rotacol:	EPA/600/R-95	5/136 (1995)			Diluent:	Dilu	ted Seawate	∍r	
Ending Date:	: 22 Feb-14 15:0	0 S	pecies:	Mytilus gallopa	rovincialis			Brine:	Not	Applicable		
Duration:	48h	S	ource:	Gutoff				Age:	n/a			
Sample ID:	18-9753-2643	С	ode:	KCi				Client:	Refe	erence Toxic	cant	
Sample Date	: 20 Feb-14 14:5	0 M	lateriai:	Potassium chi	loride			Project:	221	05		
Receive Date	: 20 Feb-14 14:5	0 s	ource:	Reference To:	xicant							
Sample Age:	NA (18.5 °C)	S	tation:	In House								
Comparison	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meti	hod			
14-8874-0236	Development R	late	2	3	2.449	1.13%		Dun	nett M	luitipie Com	parison Te	st
Point Estima	te Summary											-
Analysis ID	Endpoint		Level	g/L	95% LCL	95% UCL	TU	Meti	hod			
08-8983-3999	Development R	ate	EC50	2.44	2.43	2.45	·			-Kärber		
Development	Rate Summary				· · · · · · · · · · · · · · · · · · ·				····			
C-g/L	Control Type	Count	Mean	95% LCL	. 95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
0	Lab Water Conti	r 4	0.989	0.986	0.992	0.978	0.995			0.00781	0.79%	0.0%
0.5		4	0.997	0.996	0,998	0.994	1	0.00		0.00308	0.31%	-0.88%
1		4	0.999	0.998	1	0.995	1	0.00	134	0.00267	0.27%	-1.01%
2		4	0.988	0.984	0.991	0.974	0.994	0.00	471	0.00941	0.95%	0.07%
3		4	0	0	0	0	0	0		0		100.0%
4		4	0	0	0	0	0	0		0		100.0%
Development	Rate Detail					• • • • • • • • • • • • • • • • • • • •						
C-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
O	Lab Water Contr	0.995	0.989	0.978	0.994			_				
0.5		1	1	0.995	0.994							
1		0.995	1	1	1							
2		0.994	0.994	0.989	0.974							
3		0	0	0	0							
4		0	0	0	0	 				······································		
•	Rate Binomials											
C-g/L	Control Type	Rep 1	Rep 2		Rep 4							
0	Lab Water Contr				156/157							
0.5		162/162			179/180							
1		186/187			169/169							
2		176/177		-	152/156							
3		0/116	0/110	0/124	0/130							
4		0/1	0/1	0/1	0/1							

Sigma: NA

CV:


5.85%

Report Date:

+3s Action Limit: 2.785

Source:

Pacific EcoRisk Bivaive Larval Survival and Development Test Organism: Mytilus galloprovincialis (Bay Mussel Potassium chloride Test Type: Development-Survival Material: Endpoint: Development Rate Reference Toxicant-REF

Qualif	ty Con	trol Data	3								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2013	Oct	16	16:17	2.421	0.07313	0.5392			15-4729-5666	09-9006-0766
2			18	15:31	2.13	-0.2176	-1.71			14-9455-9956	00-6656-4134
3			24	13:51	2.213	-0.1349	-1.04			07-7486-5258	12-4981-0284
4			30	15:20	2.234	-0.1135	-0.871			11-2895-1652	02-5267-2624
5		Nov	5	17:33	2.41	0.06215	0.4592			03-5561-9441	20-3893-2621
6			21	15:16	2.32	-0.02835	-0.2135			20-5691-0482	03-4815-2245
7			27	17:45	2.41	0.06196	0.4578			04-6155-9828	05-5569-0544
8		Dec	4	15:44	2.434	0.08623	0.634			14-8498-2872	06-7448-3918
9			12	13:49	2.235	-0.1129	-0.8663			07-3452-0274	04-8262-0765
10			18	14:11	2.387	0.0389	0.2888			04-4375-9945	08-5958-3584
11			27	15:11	2.352	0.004405	0.03295			02-4687-1598	09-0839-1830
12			31	16.25	2.115	-0.2333	-1.84			04-6514-2484	20-3488-8339
13	2014	Jan	9	15:25	2.449	0.1016	0.7449			02-9075-5791	13-0761-7035
14			21	15:46	2.481	0.133	0.9685			03-5782-2218	02-6788-9034
15			23	16:11	2.277	-0.07121	-0.5414			14-7843-2753	11-6366-1634
16			29	16:16	2.362	0.01448	0.1081			04-8512-3256	01-1623-5219
17		Feb	6	17:18	2.329	-0.01913	-0.1438			03-4254-8013	11-4239-7957
18			7	13:47	2.717	0.3694	2.568	(+)		01-9384-3613	14-9880-6070
19			10	16:22	2.434	0.08632	0.6347			17-8218-8470	13-4967-2645
20			12	16:40	2.322	-0.02571	-0.1936			18-3909-2114	01-3442-3701
21			20	14:50	2.441	0.0929	0.6821			06-5660-7780	08-8983-3999

+2s Warning Limit: 2.631

Mytilus sp. Development Toxicity Test Count Data

Client:	Reference Toxicant	Test Start Date:	2/20/14
Test Material:	Potassium Chloride	Test End Date:	2/22/14
Test ID #:	55411	Enumeration Date:	2/24/14
Project #:	22105	Investigator:	A

Treatment (g/L)	Replicate	Number of Normal Larvae	Number of Abnormal Larvae	Total Number Larvae	Percent Normal Development
	A	190		191	99.5
Control	В	173	2	175	98.9
	C	175	4	179	97.8
	D	156	ı	157	99.4
	A	162	O	162	100.0
0.5	В	189	0	189	1000
	C	195	}	196	99.5
	D	179		180	99.4
	A	186		187	99.5
1	В	185	0	185	100.0
•	С	170	0	170	100.0
,	D	169	0	169	100.0
	A	176		177	99.4
2	В	172	1	173	99.4
_	С	178	Z	1 <i>8</i> 0	98.9
	D	152	4	156	97.4
	A	0	116	116	0,0
3	В	0	//0	//0	0.0
	C	O	124	124	0.0
	D	0	130	/30	0.0
	Α	0	0	0	0.0
, [В	0	υ	O	0.0
4	С	0	12	0	0.0
	D	0	0	0	0.0

Mytilus sp. Development Toxicity Test Water Chemistry Data

Client:	Reference Toxicant	Organism Log#:_	7960	Age:	N/A
Test Material:	Potassium Chloride	Organism Supplier:	લ્હ	HOFE.	
Test ID#:	55411 Project #: 22105	Control/Diluent:	FSV	/ @ 30ppt	
Test Date:	2/20/14				

		Day 0			
Treatment (g/L)	Temperature (°C)	pН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	18.5	7.80	9.2	29.0	Ref Tox Stock #
0.5	18.5	7.82	9.3	29.7	Test Solution Prep:
ı	185	7.84	9.3	30.3	New WQ:
2	143.5	7.84	9.4	31.4	Innoculation Date: 2 20 114
3	18.5	7.83	9.4	82.6	Innoculation Time:
4	185	7.83	9.4	33.5	Innoculation Signoff
Meter ID	6919	PH19	P-007	ECOY	

		Day 1			
Treatment	Temperature ("C)	pH	D.O. (mg/L)	Salinity (ppt).	Signoff
Control	18.3				Date: 2/21/14
0,5	18.3				WQ: MK
1	18.3				
2	18.3				
3	18.3				
4	18,3				
Meter ID	69A				

		Day 2			
Treatment	Temperature (°C)	рН	D.O. (mg/L)	Salinity (ppt)	Signoff
Control	18.2	7.84	7.6	29.4	Termination Date: 2/22/14
0.5	18.2	7.80	7.6	29.9	Termination Time:
1	18.2	7.82	7.6	30.8	Termination Signoff:
2	18.2	7.83	7.7	31.9	Old WQ: P. M.S.
3	18.2	7.84	7.6	32.8	
4	18.2	7.85	7.7	33.9	
Meter ID	6914	pH 19	KD07	ELOH	

Appendix F

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Anchorage Effluent to Topsmelt (Atherinops affinis)

Report Date:

27 Feb-14 13:35 (p 1 of 2) 55117 | 03-4233-7359

CETTO SUI	nmary Kepor	τ						st Code:	,		3-4233-735
Chronic Larv	al Fish Survival a	nd Gr	owth Test	·····						Paci	fic EcoRisi
Batch ID: Start Date: Ending Date: Duration:	16-1577-6990 18 Feb-14 16:15 25 Feb-14 09:25 6d 17h	•	Test Type: Protocol: Species: Source:	Growth-Surviva EPA/600/4-91/ Atherinops affil Aquatic Biosys	002 (1994) nis		Dil	alyst: uent: ne: e:	Alison Briden Laboratory Wat Not Applicable 12	ter	
•	17-9785-6733 17 Feb-14 06:00 : 18 Feb-14 11:15 34h (1.7°C)	:	Code: Material: Source: Station:	Eff Effluent Kinnetic Labora Municipality of	•		-	ent: oject:	Kinnetic Labora 22017	atories, Inc	
Comparison S	Summary		•								
Analysis ID 19-5447-8991 11-3368-3529		ss-mg	NOEL 2.8 2.8	>2.8 >2.8 >2.8	TOEL NA NA	PMSD NA 24.1%	TU 35.71 35.71		od Many-One Ran ett Multiple Corr		
Point Estimat Analysis ID	e Summary Endpoint		Level	%	95% LCL	95% UCL	TU	Metho	od		
10-4344-6942	Mean Dry Blomas	es-mg	IC5 IC10 IC15 IC20 IC25 IC40 IC50	0.0467 0.0935 0.14 >2.8 >2.8 >2.8 >2.8	0.0179 0.0357 0.0536 N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	2140 1070 713.2 <35.71 <35.71 <35.71 <35.71	Linea	r Interpolation (I	CPIN)	
7d Survival R	ate Summary							•			
C-%		Count		95% LCL	95% UCL	Min	Max	Std E		CV%	%Effect
0 0.175 0.35 0.7 1.4 2.8	Lab Water Contr 5 5 5 5 5	; ; ;	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	0 0 0 0	0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%
Mean Dry Bior	nass-mg Summar	у		**************************************							
)	Lab Water Contr 5		1.56	95% LCL 1.42	95% UCL 1.71	Min 1.08	Max 2.08	Std Ei 0.174	0.389	CV% 24.8%	%Effect 0.0%
0.175 0.35 0.7	5 5 5 5	; ;	1.14 1.39 1.28 1.28	1.08 1.27 1.19 1.22	1.2 1.5 1.37 1.34	0.952 0.978 1.09 1.13	1.37 1.8 1.69 1.45	0.0738 0.138 0.106 0.0692	0.309 0.237	14.4% 22.3% 18.5% 12.1%	27.2% 11.3% 18.1% 18.3%
1.4	- n										

Report Date: Test Code: 27 Feb-14 13:35 (p 2 of 2)

 •	~	17	,0.00	P		٧.	٠,
	55	117	103-4	423	3-	73	59

								20111 100 4500 100
Chronic L	arval Fish Survival a	and Grow	th Test					Pacific EcoRisi
7d Surviv	al Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		•
0	Lab Water Contr	1	1	1	1	1	****	
0.175		1	1	1	1	1		
0.35		1	1	1	1	1		
0.7		1	1	1	1	1		
1.4	•	1	1	1	1	1		
2.8		1	1	1	1	1	•	
Mean Dry	Biomass-mg Detail		;	***************************************				
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	1.0B	1.47	2.08	1.39	1.81		
0.175		1.02	1.37	1.13	1.22	0.952		
0.35		1.8	1.23	1.51	0.978	1.42		
0.7		1.23	1.15	1.09	1.25	1.69		
1.4		1.15	1.13	1.45	1.23	1.44		
2.8	•.	1.16	1.1	1.53	1.21	1.33		
7d Surviva	ıl Rate Binomials	· · · · · · · · · · · · · · · · · · ·						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	5/5	5/5	5/5	5/5	5/5		······································
0.175		5/5	5/5	5/5	5/5	5/5		
0.35		5/5	5/5	5/5	5/5	5/5		
0.7		5/5	5/5	5/5	5/5	5/5		
1,4		5/5	5/5	5/5	5/5	5/5		
2.8		5/5	5/5	5/5	5/5	5/5		

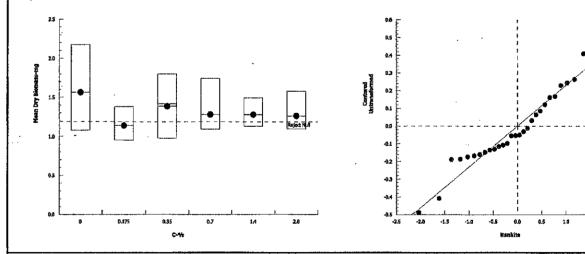
Report Date:

27 Feb-14 13:35 (p 1 of 2)

Test Code: 55117 | 03-4233-7359

						Test	Code:		55117 0	3-4233-73
Chronic Larval Fish Survival	and Growth	Test							Paci	fic EcoRi
Analysis ID: 19-5447-8991 Analyzed: 27 Feb-14 13:3			Survival Rat	e Control vs 1	reatments .		IS Version: lal Results:	CETISv1 Yes	1.8.5	
Data Transform		Alt Hyp	Trials	Seed	····		NOEL	LOEL	TOEL	TU
Angular (Corrected)		C>T	NA.	NA			2.8	>2.8	NA	35.71
Steel Many-One Rank Sum To	et .									
		Test Stat	Critical	Ties DF	P-Value	P-Type	Decision(n:5%)		
Control vs C-% _ab Water Control 0.175		27.5	16	1 . 8	0.8333	Asymp	Non-Signif		t	
0.35		27.5	16	1 8	0.8333	Asymp	Non-Signif			
0.7		27.5	16	1 8	0.8333	Asymp	Non-Signif			
1,4		27.5	16	1 8	0.8333	Asymp	Non-Signif			
2.8		27.5	16	1 8	0.8333	Asymp	Non-Signif			
ANOVA Table						· · · · · · · · · · · · · · · · · · ·				
Source Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(c	x:5%)		
Between 0	•••	0		5	65500	<0.0001	Significant	Effect		
Error 0		0		24	_					
Total 0				29						
d Survival Rate Summary				4						
:-% Control Type		Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
Lab Water Cont		1	1	1	1	1	1	0	0.0%	0.0%
1.175	5	1	1	1	1	1	1	0	0.0%	0.0%
.35	5	1	1	1	1	1	1	0	0.0%	0.0%
0.7	5	1	1	1	1	1	1	0 .	0.0%	0.0%
1.4	5	1	1	1	1	1	1	0	0.0%	0.0%
2.8		1	1	1	· · · · · · · · · · · · · · · · · · ·	1	1	0	0.0%	0.0%
Angular (Corrected) Transfor		•	000/ 1 01	028/ 1101	DP a ali a sa	88	68a.	Std Em	OV#	0/ E##a.a.
Control Type Lab Water Cont		Mean 1.35	95% LCL 1.35	95% UCL 1.35	Median 1.35	Min 1.35	Max 1.35	Std Err	CV% 0.0%	%Effec 0.0%
	-	1.35	1.35	1,35	1.35	1.35	1.35	0	0.0%	0.0%
).175).35		1.35	1.35	1.35	1.35	1.35	1.35	0	0.0%	0.0%
).7		1.35	1.35	1.35	1.35	1.35	1.35	0	0.0%	0.0%
i.4		1.35	1.35	1.35	1.35	1.35	1.35	0	0.0%	0.0%
2.8		1.35	1.35	1.35	1.35	1.35	1.35	Ö	0.0%	0.0%
Fraphics	<u>-</u>									
наринсэ		•								٠
10	• •	•	•		1,02400		1			
0.9 E					Ł			-1		• :
о.в 🚉					-		ì			
8 o.7					7.52-01					
07				Centitured	¥.					•
S or				ä	.		i			
* 0.5 E					B.0E-01 -					
0.4					ļ		. :			
n 2					ŀ		į			
0.3 -					2.5E-01		i			
0.2					ŀ		į			
0.1 -							į			
60 E	<u>, </u>			J	0.02+00		i La maghanasairea	eedee o o b o		· `
a 0.175	0.36 0.7	1.4	2.5		-2.5	-2.0 -1.5 -	1.0 -0.5 0.0	0.5 1.0	1.5 2.0	2.5
	C-%						Hankite			

CETIS Analytical Report


Report Date:

27 Feb-14 13:35 (p 2 of 2)

Test Code:

55117 | 03-4233-7359

Survival and G 168-3529 2b-14 13:35 Zeta NA mparison Test C-% 0.175* 0.35 0.7 1.4 2.8 Sum Squares 0.5163479	Endpoint: Manalysis: Pa	2.36 2.36 2.36 2.36 2.36 2.36	Seed NA	P-Value 0.0269 0.3724 0.1470 0.1434 0.1226		Non-Sigr Non-Sigr	S: Yes LOEL >2.8 α(α:5%)		TU 35.71
2eta NA mparison Test C-% 0.175* 0.35 0.7 1.4 2.8	Analysis: Pa Alt Hyp C > T Test State 2.66 1.11 1.77 1.79 1.88	Trials NA Critical 2.36 2.36 2.36 2.36 2.36 2.36	MSD DF 0.377 8 0.377 8 0.377 8	P-Value 0.0269 0.3724 0.1470 0.1434	PMSD 24.1% P-Type CDF CDF CDF CDF CDF	NOEL 2.8 Decision Significat Non-Sign Non-Sign Non-Sign	LOEL >2.8 a(a:5%) at Effect afficant Effect afficant Effect	TOEL	
Zeta NA mparison Test C-% 0.175* 0.35 0.7 1.4 2.8	Analysis: Pa Alt Hyp C > T Test State 2.66 1.11 1.77 1.79 1.88	Trials NA Critical 2.36 2.36 2.36 2.36 2.36 2.36	MSD DF 0.377 8 0.377 8 0.377 8	P-Value 0.0269 0.3724 0.1470 0.1434	PMSD 24.1% P-Type CDF CDF CDF CDF CDF	NOEL 2.8 Decision Significat Non-Sign Non-Sign Non-Sign	LOEL >2.8 a(a:5%) at Effect afficant Effect afficant Effect		
Zeta NA mparison Test C-% 0.175* 0.35 0.7 1.4 2.8	Alt Hyp C > T Test Star 2.66 1.11 1.77 1.79 1.88	Trials NA t Critical 2.36 2.36 2.36 2.36 2.36 2.36	MSD DF 0.377 8 0.377 8 0.377 8 0.377 8	P-Value 0.0269 0.3724 0.1470 0.1434	P-Type CDF CDF CDF CDF	NOEL 2.8 Decision Significat Non-Sigr Non-Sigr Non-Sigr	LOEL >2.8 n(a:5%) Int Effect Ifficant Effect Ifficant Effect Ifficant Effect		
NA mparison Test C-% 0.175* 0.35 0.7 1.4 2.8 Sum Squares	C > T Test Star 2.66 1.11 1.77 1.79 1.88	NA t Critical 2.36 2.36 2.36 2.36 2.36 2.36	MSD DF 0.377 8 0.377 8 0.377 8 0.377 8	0.0269 0.3724 0.1470 0.1434	P-Type CDF CDF CDF CDF CDF	Decision Significat Non-Sign Non-Sign Non-Sign	>2.8 n(a:5%) nt Effect lificant Effect lificant Effect lificant Effect		
mparison Test C-% 0.175* 0.35 0.7 1.4 2.8	Test Star 2.66 1.11 1.77 1.79 1.88	t Critical 2.36 2.36 2.36 2.36 2.36 2.36	MSD DF 0.377 8 0.377 8 0.377 8 0.377 8	0.0269 0.3724 0.1470 0.1434	P-Type CDF CDF CDF CDF	Decision Significa Non-Sign Non-Sign Non-Sign	n(α:5%) nt Effect olficant Effect olficant Effect olficant Effect		
C-% 0.175* 0.35 0.7 1.4 2.8 Sum Squares	2.66 1.11 1.77 1.79 1.88	2.36 2.36 2.36 2.36 2.36 2.36	0.377 8 0.377 8 0.377 8 0.377 8	0.0269 0.3724 0.1470 0.1434	CDF CDF CDF CDF	Significati Non-Sign Non-Sign Non-Sign	nt Effect dificant Effect dificant Effect dificant Effect		
0.175* 0.35 0.7 1.4 2.8 Sum Squares	2.66 1.11 1.77 1.79 1.88	2.36 2.36 2.36 2.36 2.36 2.36	0.377 8 0.377 8 0.377 8 0.377 8	0.0269 0.3724 0.1470 0.1434	CDF CDF CDF CDF	Significati Non-Sign Non-Sign Non-Sign	nt Effect dificant Effect dificant Effect dificant Effect		
0.35 0.7 1.4 2.8 Sum Squares	1.11 1.77 1.79 1.88	2.36 2.36 2.36 2.36	0.377 8 0.377 8 0.377 8	0.3724 0.1470 0.1434	CDF CDF CDF	Non-Sigr Non-Sigr Non-Sigr	olficant Effect olficant Effect olficant Effect		
0.7 1.4 2.8 Sum Squares	1.77 1.79 1.88	2.36 2.36 2.36	0.377 8 0.377 8	0.1470 0.1434	CDF CDF	Non-Sigr Non-Sigr	ificant Effect ificant Effect		
1.4 2.8 Sum Squares	1.79 1.88	2.36 2.36	0.377 8	0.1434	CDF	Non-Sigr	nificant Effect		
2.8 Sum Squares	1.88	2.36				_			
Sum Squares			0.377 8	0.1226	CDF	Non-Sigr	ificant Effect		
	Mean So						· · · · · · · · · · · · · · · · · · ·		
	Mean So								
0.5163479		uare	DF	F Stat	P-Value	Decision	ι(α:5%)		
	0.103269	96	5	1.62	0.1935	Non-Sign	ificant Effect		
1,532115	0.063838	313	24		,				
2.048463			29	-	•				:
		<u> </u>			i			-,	
Test		Test Stat	Critical	P-Value	Decision	(α:1%)			
Bartlett Equality	of Variance	5.41	15.1	0.3674	Equal Var	iances			
Shapiro-Wilk W	Normality	0.96	0.903	0.3013	Normal D	istribution			
ng Summary									
ol Type Cour	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
ater Contr 5	1,56	1.08	2.05	1.47	1.08	2.08	0.174	24.8%	0.0%
5	1.14	0.935	1.34	1.13	0.952	1.37	0.0735	14.4%	27.2%
5	1.39	1	1.77	1.42	0.978	1.8	0.138		11.3%
5	1.28	0.986	1.58						18.1%
					•				18.3%
									19.2%
	Test Bartlett Equality Shapiro-Wilk W mg Summary of Type Cour	Test Bartlett Equality of Variance Shapiro-Wilk W Normality mg Summary of Type Count Mean later Contr 5 1.56 5 1.14 5 1.39 5 1.28 5 1.28	Test Test Stat	Test Test Stat Critical	Test Test Stat Critical P-Value	Test Test Stat Critical P-Value Decisions	Test Test Stat Critical P-Value Decision(α:1%)	Test Test Stat Critical P-Value Decision(α:1%)	Test Test Stat Critical P-Value Decision(α:1%)

CETIS Analytical Report

Report Date:

27 Feb-14 13:35 (p 1 of 1)

Test Code:

55117 | 03-4233-7359

Chronic Larva	al Fish Survival and	Growth Test			Pacific EcoRisk
Analysis ID:	10-4344-6942	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.8.5
Analyzed:	27 Feb-14 13:35	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

X Trans	sform	Y Transform	See	d	Resamples	Exp 95% CL	Method	
Linear		Linear	1741	285	200	Yes	Two-Point Interpolation	
Point E	stimates				1			
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
IC5	0.0467	0.0179	N/A	2140	NA	5599		
IC10	0.0935	0.0357	N/A	1070	NA	2800		•
IC15	0.14	0.0536	N/A	713.2	NA	1866		
IC20	>2.8	N/A	N/A	<35.71	NA	NA		
IC25	>2.8	N/A	N/A	<35.71	NA	NA		
IC40	>2.8	N/A	N/A	<35.71	NA	NA		
IC50	>2.8	N/A	N/A	<35.71	NA	NA		

Mean Dr	y Biomass-mg Sumn	nary				alculated Va	ıriate			
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Lab Water Contr	5	1,56	1.08	2,08	0.174	0.389	24.8%	0.0%	
0.175		5	1.14	0.952	1.37	0.0735	0.164	14.4%	27.2%	
0.35	•	5	1.39	0.978	1.8	0.138	0.309	22.3%	11,3%	
0.7		5	1.28	1.09	1.69	0.106	0.237	18.5%	18.1%	•
1.4		5	1.28	1.13	1.45	0.0692	0.155	12.1%	18.3%	
2.8		5	1.26	1.1	1.53	0.0764	0.171	13.5%	19.2%	

7 Day Chronic Topsmelt (A. affinis) Test Data

Client:	K	innetic-Anchora	ge	Organism Log#: 79	45 Age: 12da	ngo
Test Material:		Effluent		Organism Supplier:	ABS	
Test ID#:	55117	Project #:	22017	Control/Diluent:	DI + Crystal Sea @ 25 ppt	
Test Date: 2	18/14	Random	ization: 5.6.2	Control Water Batch:	979	

						_							
Treatment	Temp		pH I		(mg/L)		ty (ppt)			ve Orgai			SIGN-OFF
(% Effluent) Control	(°C)	7.93	old	8.0	old	24.1	old	5	<u>B</u>	<u>c</u>	D -2	5 5	Date: 2/18/14
	19.5	7.97		7.9		24.2		5	5	5	5	5	Sample ID#:
0.175	19.5	7.97		79		24.2		5	2	5	5	5	34100 Test Solution Prop:
0.35	19.5	7.97		7.9		24.0		5	2	5	5-	5	New WQ: CJD
1.4	19.5	7.96		7.9		27.7		5	5	5	5	5	Initiation Time;
	19.5	7.95		7.9		24.4		5	2	5	2	2	Initiation Signoff:
2.8	 	PHIS		RDOY.							7	2)
Meter ID:	381			 		ECOY							Date:
Control	19,4	8.08	4.60	8.0	7.0	24.4	24.1	5	5	5	5	5	2-19-14 Sample ID#:
0.175	19.4	8.09	1.59	7.9	6.4	24.8	14.3	5	5	5	5	5	34100
0.35	19.4	8.00	7.59	7.4	6.3	24.9	242	5	5	5	5	5	Test Solution Prep:
0.7	19.4	8.08	7.60	7.9	6.3	25.1	24.1	5	5	5	5	5	New WQ:
1.4	19.4	8.07	7.60	7.9	6.4	25.6	24.0	5	5	5	5	5	Renewal Time:
2.8	19.4	8.06	7.59	7.8	6.3	35.8 26.0 _{SM}	24.5	5	5	5	5	5	Renewal-Sign-off;
Meter ID:	38A	DH15	PHILL	RD05	po7	Ero8	Erop						old wo:
Control	193	8.13	7.66	8.1	7.0	24.0	23.9	5	5	5	Ω	5	Date: 2/20/14
0.175	19.3	8.15	7.70	8.1	6.9	24.1	24.3	5	5	5	5	5	Sample ID #: 34143
0.35	19.3	8.14	7,74	g. (6.9	24.2	24.3	5	5	5	5	5	Test Solution Prep:
0.7	19.3	8.14	7.77	8.1	7.0	24.3	24.5	5	5	5	5	3	New WQ:
1.4	19.3	8.13	7.76	8.1	7.0	24.4	25.1	5	5	5	5		Renewal Time; 1340
2.8	19.3	8.12	7.73	8.1	6.8	24.8	25.7	5	5	5	5	5	Renowal-Sign-off:
Meter ID:	36A	PHP	PH15	P007	RD05	Eco4	EC08						Old WQ: CP
Control	19.4	8.Œ	7.77	8.2	7.2	24.1	23.9	5	5	5-	3	5-	Date:
0.175		8.05		8.2	7.4	24.1	24.3	5	5	5-	5-	5	2/21/14 Sample ID 2: 34/143
0,35		8.04		8.2		24.1	24.2	5	-5-	5-	5-	· 5	Test Solution Press:
0.7	19.4	છ.બ		8.2		24.2	24.3	5	5	<u>-</u>	5	5	Now WQ: MA
1.4	19.4		7.81	8.2		24.3		5	5-	5	5	5	Renewal Time:
2.8	19.4	8.02		8.2		24.5		5	5	5	5-	7	Renewal-Sign-off:
												_	
Meter ID:	38A	PH8	PH16	RD04	R005	Ecou	Ec04						Old WQ: D. M.S.

7 Day Chronic Topsmelt (A. affinis) Test Data

Client:	Kinnetic- Anchorage	Organism Log#:	5 Age: 12 days
Test Material:	Effluent	Organism Supplier:	ABS
Test ID#:	55117 Project #: 22017	Control/Diluent:	DI + Crystal Sea @ 25 ppt
Test Date: 2	118/14 Randomization: 5.6.2	Control Water Batch:	979

•													
Treatment	Temp	р	H	D.O. (mg/L)	Salinit	y (ppt)			/e Organ	isms		SIGN-OFF
(% Effluent)	(°C)	new	old	new	old	new	old	Α	В	С	D	E	Date
Control	19.4	788	7.81	7.8	1.3	24.6	24.3	5	5	5	5	5	2/22/14
0.175	194	7.89	7.80	7.8	7.2	24.1	24.6	5	5	5	5	5	Sample ID #: 34/69
0,35	19.4	7.90	7.76	7.8	7.2	24.1	24.6	5	5	5	5	S	Test Solution Prep:
0.7	194	7.90	7.78	7.8	7.3	24.2	24.4	5	5	S	5	5	Now WQ: UD
1,4	19.4	7.89	7.77	7.8	7.0	24.4	24.8	5	5	5	5	5	Renewal Time:
2.8	19.4	1.88	7.72	7.7	7.0	24.6	25.0	5	5	5	S	5	
Meter ID:	38A		みりら	RECO	Hoas	ECOLO	Ecolo						Old WQ:
Control	19.00	8.30	7.74	7.9	7.3	24.5	24.0	5	5	5	5	5	Date: 2/23/11
0.175	19.4	8.30	7.77	7.9	7.2	24.5	24.2	5	5	5	9	5	Sample ID #: 34169
0.35	19.6	8.29	7.77	7.9	7.1	24.8	24.2	5	5	5	5	5	lest Solution French
0.7	19.6	8,29	7.78	7.9	7.1	24.4	24.3	5	5	5	5	5	New WOj
1.4	19.6	8,27	7.76	7.9	7.0	24.2	24.4	5	5	5	5	5	Renewal Time: //20
2.8	19.6	8.22	7.75	7.9	6.9	24.2	24.7	5	5	5	5	5	Renewal-Sign-off:
Meter ID:	38A	OH18	PH15	even	RD07	БОЧ	EC09						oldwo: CP
Control	19.4	7.49	7.88	7.7	7.8	24.4	24.4	5	ร	5	5	5	Date: 2 24/14
0.175	19.4	8.00	7.84	7.8	7.5	24.6	24.7	5	5	5	5	5	Sample ID#: 34169
0.35	19.4	8.01	7.82	7.8	7.5	24.6	24.7	d	ර්	5	6	5	Test Solution Prop:
0.7	19.4	8.01	7.81	7.8	7.3	24.5	24.6	5	5	5	ধ	చ	New WQ:CP
1.4	19.4	8.00	7.81	7.8	7.3	24.6	24.6	5	5	5	5	5	Renewal Time: /115
2.8	19.4	8.00	7.80	7.7	7.3	24.7	24.5	5	5	5	5	5	Renewal-Sign-off: SM
Meter ID:	38A	PH15	PH18	RD07	RD07	Eco9	EC09						Old WQ: COD
Control	19.4		7.71		10		24.7	5	5	5	5	5	2/25/14
0.175			7.72		6.0		251	5	5	5	5	5	Termination Time:
0.35	19.4		7.72		66		25.0	5	5	5	5	5	Termination Time:
0.7	19.4		7.73		6.6		25.1	5	5	5	5	5	OHIWQ: 15
1.4	19.4		7.72		6.7		15.1	5	5	5) 5	5	
2.8	19.4		766		6.0		25.2	5	5	5	פא	5	
Meter ID:	38A		MIG		4004		ELOP						
Merci ID:	0/ 1		<u></u>		<u> </u>	manalanda.					<u> </u>		44444444444

Chronic Topsmelt Dry Weight and Biomass Data

Client:	Kinnetic Anchorage	Test ID #: _	55117	Project#	22017	
Test Material:	Effluent	Tare Weight Date:	2/21/14	Sign-off:	AWS	
Test Date:	2/18/14	Final Weight Date:	2/26/14	Sign-off;	U	

Pan ID	Concentration	Replicate		Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
. 1	Control	A	171.36	176.74	6	1.08
22		В	178.47	185.75	5	1.47
3		С	173.49	183.89	5	2.08
4		D	161.86	/60.81	5	1.39
5		Е	165.74	174.78	5	1.81
6	0.175	Α	174.40	179.52	5	1.02
7		В	171.70	178.54	5	1.37
8		C	156.92	162.55	5	1.13
9		D	172.54	178.66	5	1.22
10		E	170.66	175.42	5	0-95
11	0.35	Α	177-08	186.10	5	1-80
12		В	17).99	178.12	5	1. 223
13		C	175.85	<i>183</i> .39	5	1.51
14		D	174.52	179.41	5 5	0.98
15		Е	176.66	183.75	5	1.42
16	0.7	Α	176.98	183.11	5	1.23
17		. В	165.21	170.94	5	1.15
18		С	166-68	172.14	5	1.09
19		D	160.75	167.00	5	1.25
20	•	Е	161-38	169.83	5	1.69
21	1.4	A	7 53.78 179.77	185.51	5	1.15
22		В	166.24	171.89	5	1.13
23		С	178.68	185.91	5	1.45
24		D	183.76	189.90	5	1.23
25		E	170.85	178.05	5	1,44
26	2.8	A	174.51	180.29	- 5	1.14
27		В	181.87	187.35	5	1.10
28		С	184.80	192.44	5	1.53
29		D	172.34	178.39	5	1.21
30		Е	170.43	177.07	5	1.33
QA 1			172.93	172.91		
QA 2			167-94	168.00		
QA 3				153.70		
	Balance ID:		BALOI	BALOI		

Appendix G

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Topsmelt (Atherinops affinis)

Report Date:

10 Mar-14 12:10 (p 1 of 2)

Test Code:

55119 | 19-2394-9241

								TOUL GODG.		0011011	A-5004-05
Chronic Larv	al Fish Survival	and G	rowth Test							Paci	fic EcoRis
Batch ID:	01-0181-5328		Test Type:	Growth-Surviva	al (7d)			Analyst:	Padrick Ande	rson	
Start Date:	18 Feb-14 17:1	5	Protocol:	EPA/821/R/02/	014 (2002)			Diluent:	Laboratory W	ater	
Ending Date:	25 Feb-14 09:2	0	Species:	Atherinops affi	nis			Brine:	Crystal Sea		
Duration:	6d 16h		Source:	Aquatic Blosys	tems, CO			Age:	12		
Sample ID:	02-3603-0830	***	Code:	KCI				Client:	Reference To	xicant	
Sample Date:	: 18 Feb-14 17:1	5	Material:	Potassium chic	oride			Project:	22019		
Receive Date	: 18 Feb-14 17:1	5	Source:	Reference Tox	icant			-			
Sample Age:	NA (19.5 °C)		Station:	In House							
Comparison	Summary	,,-,-									
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TŲ	Meth	ód		
12-7626-4343	7d Survival Rate	3	0.75	1	0.866	11.8%	·····	Stee	Many-One Ra	nk Sum Tes	t
04-5151-6436	Mean Dry Blom	ass-mg	0.75	>0.75	NA	26.1%		Dunr	ett Multiple Co	mparison Te	st
Point Estimat	te Summary									·	
Analysis ID	Endpoint		Level	g/L	95% LCL	95% UCL	TU	Meth	od		
18-6425-8168	7d Survival Rate	3	EC50	0.921	0.881	0.962		Spea	rman-Kärber		
17-0679-8670	Mean Dry Bioma	ass-mç	IC5	0.525	N/A	0.885		Lines	r Interpolation	(ICPIN)	
			IC10	0.727	N/A	0.806					
			IC15	0.765	N/A	0.811					
			IC20	0.783	0.422	0.827					
			IC25	0.8	0.552	0.841					
			IC40	0.852	0.743	0.887					
··			IC50	0.886	0.792	0.92					
7d Survival R	late Summary										
C-g/L	Control Type	Coun		95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Effec
D 	Lab Water Contr	-	1	1	1	1	1	Q	0	0.0%	0.0%
0.25	•	5	1	1	1	1	1	0	0	0.0%	0.0%
0.5		5	1	1	1	1	1	0	0	0.0%	0.0%
0.75		5	1	1	1	1	1	0	0	0.0%	0.0%
			0.24	0.178	0.302	0	0.4	0.074		69.7%	76.0%
		5		^	•	•					100.0%
1.25		5	0	0	0 -	0	0	0	0	-· · · · · · · · · · · · · · · · · · ·	
1.25 Mean Dry Blo	mass-mg Summ	5 ary	0								
1.25 Mean Dry Blo C-g/L	Control Type	5 ary Coun	0 t Mean	95% LCL	95% UCL	Min	Max	Std E	irr Std Dev		%Effec
1.25 Mean Dry Blo C-g/L	•	5 ary Coun 5	0 t Mean 1.39	95% LCL 1.28	95% UCL 1.51	Min 1.17	Max 1.95	Std E 0.143	err Std Dev	22.9%	%Effec 0.0%
1.25 Mean Dry Blo C-g/L)).25	Control Type	5 ary Coun 5 5	0 Mean 1.39 1.38	95% LCL 1.28 1.27	95% UCL 1.51 1.5	Min 1.17 1.04	Max 1.95 1.69	Std E 0.143 0.132	Frr Std Dev 0.319 0.296	22.9% 21.4%	%Effec 0.0% 0.69%
1.25 Mean Dry Blo C-g/L)).25).5	Control Type	5 ary Coun 5 5 5	0 t Mean 1.39 1.38 1.33	95% LCL 1.28 1.27 1.28	95% UCL 1.51 1.5 1.39	Min 1.17 1.04 1.16	Max 1.95 1.69 1.49	Std E 0.143 0.132 0.063	Std Dev 0.319 0.296 0.141	22.9% 21.4% 10.6%	%Effec 0.0% 0.69% 4.39%
1.25 Mean Dry Blo C-g/L 0 0.25 0.5 0.75	Control Type	5 Coun 5 5 5 5	0 Mean 1.39 1.38 1.33 1.25	95% LCL 1.28 1.27 1.28 1.16	95% UCL 1.51 1.5 1.39 1.34	Min 1.17 1.04 1.16 0.92	Max 1.95 1.69 1.49 1.47	Std E 0.143 0.132 0.063 0.108	5 0.319 0.296 0.141 0.241	22.9% 21.4% 10.6% 19.3%	%Effection 0.0% 0.69% 4.39% 10.6%
1 1.25 Mean Dry Blo C-g/L 0.25 0.5 0.75 1	Control Type	5 ary Coun 5 5 5	0 t Mean 1.39 1.38 1.33	95% LCL 1.28 1.27 1.28	95% UCL 1.51 1.5 1.39	Min 1.17 1.04 1.16	Max 1.95 1.69 1.49	Std E 0.143 0.132 0.063 0.108	5 0.319 0.296 0.141 0.241	22.9% 21.4% 10.6%	%Effec 0.0% 0.69% 4.39%

Analyst: PO QA: 8VV

Report Date: Test Code: 10 Mar-14 12:10 (p 2 of 2) 55119 | 19-2394-9241

							lear onge.	00110 10 2001 02-11
Chronic L	arval Fish Survival a	and Grow	th Test					Pacific EcoRisk
7d Surviv	al Rate Detail							
C-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	1	1	1	1	1		
0.25		1	1	1	1	1		
0.5		1 .	1	1	1	1		
0.75		1	1	1	1	1		
1		0.4	0.2	0.4	0	0.2		
1.25		0	0	0	0	0		
Mean Dry	Biomass-mg Detail							
C-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Water Contr	1.21	1.17	1.31	1.33	1.95		
0.25		1.04	1.29	1.69	1.69	1.21		
0.5		1.16	1.22	1.42	1.49	1.38		
0.75		1.35	1.47	1.43	0.92	1.07		
1		0.32	0.242	0.472	0	0.154		
1.25		0	0	0	0	0		
7d Surviva	al Rate Binomials					·*************************************		
C-g/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 6		
0	Lab Water Contr	5/5	5/5	5/5	5/5	5/5		
0.25		5/5	5/5	5/5	5/5	5/5		
0.5		5/5	5/5	5/5	5/5	5/5		
0.75		5/5	5/5	5/5	5/5	5/5		
1		2/5	1/5	2/5	0/5	1/5		
1.25		0/5	0/5	0/5	0/5	0/5		

Report Date: 04 Mar-14 14:37 (1 of 1)

CETIS QC Plot

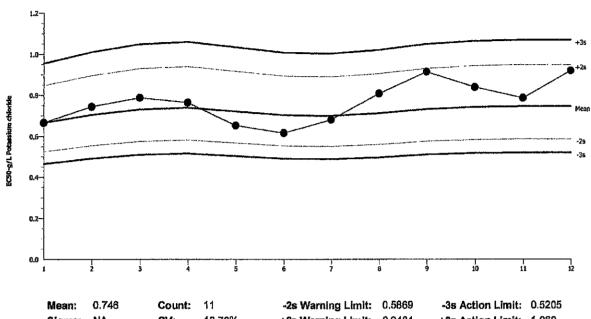
Chronic Larval Fish Survival and Growth Test

Test Type: Growth-Survival (7d)

Protocol: EPA/821/R/02/014 (2002)

Endpoint: 7d Survival Rate

Protocol: Sepa/821/R/02/014 (2002)


Protocol: Chronic Larval Fish Survival and Growth Test

Pacific EcoRisk

Material: Potassium chloride

Source: Reference Toxicant-REF

Chronic Larval Fish Survival and Growth Test

			an: gma:	NA		CV:	12.70%		_	it: 0.9484	+3s Action Limit:	
Quality	Con	trol Data	3									
Point \	Year	Month	Day	Time	QC Dat	a Delta	Sigma	Warning	Action	Test ID	Analysis ID	
	2000	Bann		40.00	0.0000	0.070	40 0000			00 0000 0000	44 7044 0450	

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2008	May	7	16:30	0.6668	-0.07918	-0.935			08-3530-9092	11-7811-2453
2	2010	Apr	6	16:00	0.7443	-0.00170	-0.01906			12-5479-8606	02-7469-6072
3	2011	Dec	1	11:40	0.7882	0.04221	0.4587			13-7822-3920	11-1532-4929
4	2012	Jul	24	15:30	0.7644	0.01842	0.2033			01-2363-8594	00-9503-8608
5		Aug	2	13:25	0.6526	-0.09343	-1.115			20-1020-1892	01-3486-1114
6			4	14:00	0.6157	-0.1303	-1.6			14-2214-8473	08-5995-4246
7	2013	Apr	4	17:45	0.68	-0.06599	-0.7718			20-2186-2907	11-0387-6637
8			5	17:55	0.808	0.06201	0.6654			12-2759-6103	12-6022-6828
9			30	14:05	0.9143	0.1682	1.695			03-6504-2395	09-9900-8353
10		May	2	17:20	0.8393	0.09326	0.9816			04-9429-8023	10-7168-7462
11	2014	Feb	6	16:30	0.7865	0.04048	0.4403			07-2180-3190	15-2982-7918
12			18	17:15	0.9208	0.1748	1.754			19-2394-9241	18-6425-8168

+3s Action Limit: 1,107

Chronic Larval Fish Survival and Growth Test

Test Type: Growth-Survival (7d)

Protocol: EPA/821/R/02/014 (2002)

Chronic Larval Fish Survival and Growth Test

Organism: Atherinops affinis (Topsmelt)

Material: Potassium chloride

Source: Reference Toxicant-REF

Chronic Lerval Fish Survival and Growth Test +36 +25 -26 -35 Mean: 0.7462 Count: 11 -2s Warning Limit: 0.5736 -3s Action Limit: 0.5029

Quali	ty Con	trol Data	a							
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning Action	Test ID	Analysis ID
1	2008	May	7	16:30	0.6357	-0.1104	-1.218		08-3530-9092	13-4415-4900
2	2010	Арг	6	16.00	0.7843	0.03817	0.3794		12-5479-8606	10-6083-8037
3	2011	Dec	1	11:40	0.795	0.04886	0.4824		13-7822-3920	01-1277-3051
4	2012	Jul	24	15:30	0.7684	0.0222	0.2229		01-2363-8594	12-0055-2382
5		Aug	2	13:25	0.6167	-0.1294	-1.449		20-1020-1892	00-0412-8630
6		•	4	14:00	0.6213	-0.1249	-1.393		14-2214-8473	05-6270-6827
7	2013	Apr	4	17:45	0.695	-0.05114	-0.54		20-2186-2907	07-3254-0030
8		•	5	17:55	0.8287	0.08258	0.7982		12-2759-6103	09-6853-5463
9			30	14:05	0.902	0.1558	1.442		03-6504-2395	01-7737-8890
10		May	2	17:20	0,8485	0.1024	0.9775		04-9429-8023	00-1493-5913
11	2014	Feb	6	16:30	0.7757	0.02951	0.2949		07-2180-3190	17-2625-4692
12			18	17:15	0.8862	0.14	1.308		19-2394-9241	14-0082-2050

+2s Warning Limit: 0.9706

CV:

NA

Sigma:

14.10%

7 Day Chronic Topsmelt Reference Toxicant Test Data

Client:	Ref	erence Toxican	<u>t</u>	Organism Log#:	7945	Age: XEA	12 days
Test Material:	Pot	assium Chlorid	3	Organism Supplier:	A	6S	
Test ID#:	55119	Project #:	22019	Control/Diluent: _	DI + Cı	rystal Sea @ 25 ppt	
Test Date:	2-18-14	_ Random	ization: <u>5.6.</u>	Control Water Batch:	979		

Temmont Temp pH														
Control 19.5 19.5 7.9 94.0 5 5 5 5 5 5 5 5 5	Treatment	Temp	р	Н	D.O. (mg/L)	Salinit	y (ppt)		# Liv	e Organ	isms		SIGN-OFF
Control 19.5 1.75 1.98 24.0 5 5 5 5 5 5 5 5 5 5 1	(g/L KCl)	(°C)		old		old	new	old	Α	В	С	D	E	Data
0.5	Control	19.5					240		5	5	5	5		2 -/8 -/4
1	0.25	19.5	7.48		7.9		24.4		5	2	b	5		
19.5 8.07 3.1 2.56 5 5 5 5 5 1715 125 19.5 8.09 3.4 25.8 5 5 5 5 5 5 5 1715 125 19.5 8.09 3.4 10.2 5.8 5 5 5 5 5 5 5 1715	0.5	19.5	801		8.0		24.7		5	5	5	5	5	rest Solution Prep:
125	0.75	19.5	8.04		8.2		25.3		5	5	5	2	5	New WQ: CJD
Control 19.3 8.0 7.7 24.1 23.7 5 5 5 5 5 5 5 5 5	1	19.5	8.07		જ.		25.5		5	5	5	5	5	Initiation Time:
Control 19.3 8.01 7.72 8.0 7.7 24.1 22.7 5 5 5 5 5 6 87 Stock Batch & 19.3 8.04 7.80 8.0 7.7 24.2 24.1 5 6 5 5 5 5 8 87 Stock Batch & 19.3 8.09 7.76 8.1 7.76 24.10 7.44 5 5 5 5 5 5 5 8 87 Stock Batch & 19.3 8.14 7.74 8.4 7.3 25.3 25.3 4 5 5 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.25	19.5	8.09		8.4		2s.8		5	5	lη	5	5	Initiation Signoff:
Control 19.3 8.01 7.72 8.0 7.7 24.1 25.7 5 5 5 5 8 87 Sick Bach # 15	Meter ID:	38A	PHIS		RD64		ELOY							
0.25	Control	19.3	8.0[.	7.72	8.0	7-7	24.1	23.7	5	5	৸	5	5	2-19-14
0.5	0.25	19.3	8.04	48	80	7.7	24.2	24.	5	6	5	5	5	15
1 19.3 8.14 7.74 8.4 7.3 25.3 25.3 4 5 5 2 3 Received Times 1 19.3 8.14 7.74 8.4 7.3 25.3 25.3 4 5 5 2 3 Received Times 1.25 19.3 8.17 7.74 8.4 7.3 25.3 25.3 25.3 4 5 5 2 3 Received Times 1.25 19.3 8.17 7.74 8.4 7.3 25.3 25.3 25.5 3 3 4 5 5 5 5 5 8 Received Sign off Meter ID: 38A p.H.B. Pttlb R007 4007 Ecolo Ecol	0.5	19.3	8.09	7.95	9:	70	24.6	244	5	5	5	5	5	SM
1 19.3 8.14 1.74 8.4 7.7 25.3 25.3 4 5 5 2 5 100 1100 125 19.3 8.17 7.72 8.0 7.2 24.0 23.9 5 5 5 5 5 00 100 19.7 8.10 7.75 8.0 7.2 24.0 23.9 5 5 5 5 5 5 00 15.	0.75	19.3	8.13	7.76	8.2	7.5	24.9	24.9	5	5	5	5	5	
Meter ID: 38A pH 8 Pt 16 R007 POOT ECO6 ELO9 Dole	1	19.3	8.14	7.74	8.4	7.3	25.3	25.3	4	5	5	2	3	
Meter ID: 38A PHB PHH6 R007 PODT ECO6 ECO9	1.25	19.3	8.17	7.76	8.6	7.2	25.7	25.6	0	0	0	0	0	Renewal-Sign-off:
Control 19.7 8.17 7.72 8.0 7.2 24.0 23.9 5 5 5 5 Date: 2-20-1/4 0.25 19.7 8.16 7.75 8.0 7.2 24.3 24.3 5 5 5 5 5 87 Steek Batch #: 0.5 19.7 8.15 7.77 8.1 7.1 24.6 24.8 5 5 5 5 5 5 Fest Solution Prep: 0.75 (91.7 8.15 7.81 8.2 7.2 24.9 25.0 5 5 5 5 5 80 Now WO: 1 19.4 8.15 7.84 8.4 7.2 25.3 25.5 3 3 7 1 2 Renewal Time: 1 125	Meter ID:	38A	BIHG	PH16	R007	F007	Ecolo	Bog						^{old WQ:} ∧ S
0.25	Control	193	8.17	7.72		7.2		23.9	5	5	5	5	5	Z-20-/4
0.5	0.25	14,3	8.16	7.75	8.0	7.2.			5	5	5	5	5	15
0.75 [O1.7] 8.15 7.81 8.2 7.2 24.9 25.0 5 5 5 5 5 SIGNATION OF TWO SIGNATURE		19,3	8.15	7.77	8.1		24.6	24.8	5	5	5	5	5	511
1 Q1 8.15 7.84 8.4 7.2 25.3 25.5 3 3 9 1 2 Renewal Time: 315 Renewal Sign-off: 1.25	0.75		8.15	7.81	8.2		24.9	25.0		5	5	5	5	
1.25 Meter ID: 3897 PH19 aH18 RD07 R005 EC04 Eco8 Oid WC: Control 19.4 8.96 7.90 8.3 7.8 24.0 24.1 5 5 5 5 5 Date: 2/21/14 0.25 19.4 8.96 7.88 8.5 7.8 24.2 24.7 5 5 5 5 6 RT Stock Batch #55 0.5 19.4 8.08 7.87 8.6 7.8 24.6 25.1 5 5 5 5 8 Test Salution Prog. 5 0.75 19.4 8.08 7.85 8.6 7.8 24.9 25.3 5 5 5 5 8 Now WC: 0.M.S. 1 19.4 8.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.6 7.84 9.0 7.85 9.0 1130 Renewal Time:	1	1963	8.15		8.4	,	25.3	25.5	3	3	4	1	2	Renewal Time:
Meter ID: 3897 PH19 AH18 RD07 R005 ECO4 ECO8 5 5 01 Vm Control 19.4 9.96 7.90 8.3 7.8 24.0 24.1 5 5 5 5 5 Date: 2/21/14 0.25 19.4 1.05 7.88 8.5 7.8 24.2 24.7 5 5 5 5 5 6 RT Stock Batch 1.5 5 0.5 19.4 1.06 7.87 8.6 7.8 24.6 25.1 5 5 5 5 8 Test Salufon Press 0.75 19.4 1.08 7.85 8.6 7.8 24.9 25.3 5 5 5 5 8 New WQ: 0.M.S. 1 19.4 1.09 7.89 9.0 7.7 25.1 25.7 3 1 3 0 2 Renewal Time: 1 19.5 1.09 7.89 9.0 7.7 25.1 25.7 3 1 3 0 2 Renewal Time: 1 Renewal Time: 1 Renewal Time: 1 Renewal Time: 1 19.5 1.09 7.89 9.0 7.7 25.1 25.7 3 1 3 0 2 Renewal Time: 1 19.5 1.09 7.89 9.0 7.7 25.1 25.7 3 1 3 0 2 Renewal Time:	1.25		-		_	_		_	_	1	_	,		Renewal-Sign-off:
Control 19.4 9.96 7.90 9.3 7.8 24.0 24.1 5 5 5 5 Date; 2/21/14 0.25 19.4 3.06 7.88 8.5 7.8 24.2 24.7 5 5 5 5 6 RT Stock Batch #; 5 0.5 19.4 3.06 7.87 3.6 7.8 24.6 25.1 5 5 5 5 8 Test Solution Press 0.75 19.4 3.08 7.85 8.6 7.8 24.9 25.3 5 5 5 5 8 New WQ: 0.M.S. 1 19.4 3.09 7.84 9.0 7.7 25.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 25.1 25.7 3 1 3 0 2 Renewal Time: 1 Renewal Time: 1 Renewal Sign. of Fig.		3819	PHIP	AH(B	RD07	R005	EC04	ELOP						Old WQ:
0.25 9.4 3.95 7-88 8.5 7-8 24.2 24.7 5 5 5 5 5 6 KT Stock Batch #; 5 0.5 19.4 3.96 7-87 3.6 7-8 24.6 25.1 5 5 5 5 5 5 0.75 19.4 3.08 7-85 3.6 7-8 24.9 25.3 5 5 5 5 5 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 19.4 3.09 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0 7.84 9.0		19.4	9.06	7.90	8.3	7.8	24.0		5	5	S	5		2/21/14
0.5 19.4 8.06 7.87 8.6 7-8 24.6 25.1 5 5 5 5 5 Test Solution Pro- 0.75 19.4 8.08 7-85 8.6 7-8 24.9 25.3 5 5 5 5 5 5 Now WQ: 0.M.S. 1 19.1 8.09 7.89 9.0 7.7 29.1 25.7 3 1 3 0 2 Renewal Time: 1 130 Renewal-Sign-off:		194	\$ 05	7-88	60		24.2		5	2	5		5	RT Stock Batch #;
0.75 194 108 7-85 8. 7-8 24.9 25.3 5 5 5 5 5 Now WO: 0.11.5. 1 194 1.09 7-84 9.0 7.7 25.1 25.7 3 1 3 0 2 Renoval Time: 1 Renoval Figure of Figur		1	pp.	i	K 291		24.6			2	5		1	Test Sulution Pre
1 194 8.09 7.84 9.0 7.7 25.1 25.7 3 1 3 0 2 Renewal Time: 1 1870 Renewal-Sign-off:					3 \$122.1		24.9		5	5	5	5	2	New WQ:
	1		141 A.							١			a.	Renewal Time:
300 49 8/4/D 12 12 12 12 12 12 12 12 12 12 12 12 12	1.25		40		-		—		_	_	_	_	l =	F
Meter ID: 384 OH 18 PMIR ROOY MOY ECOBEGO 6	Meter ID:	38A	0418	PULP	PD04	июи	Ecoh	Ecolo						Old WQ!

7 Day Chronic Topsmelt Reference Toxicant Test Data

Client:	Reference Toxicant	Organism Log#:	7965 Age: 12days			
Test Material:	Potassium Chloride	Organism Supplier:	ABS			
Test ID#:	55119 Project #: 22019	Control/Diluent:	" DI + Crystal Sea @ 25 ppt			
Test Date:	2-18-14 Randomization: 5-6-1	Control Water Batch:	979			

Treatment	Тетр	p	Н	D.O. (mg/L)	Salinit	y (ppt)	# Live Organisms			SIGN-OFF		
(g/L KCl)	(°C)	new	old	new	old	new	old	A	В	С	D	E	
Control	19.4	8,02	7.420	78	7.3	725g	24.]	(n	5	5	5	5	2/22/14
0,25	9	8.05	1.420	7.9	<u>د</u> ي	24.2	249	b	ទ្រ	5	\$	5	RT Stock Batch #:
0.5	19.4	8.07	1.430	8.2	7.3	24.4	25.2	5	6	5	S	5	Test Solution Prep:
0,75	19.4	8.088	7.78	ઈ.ડ	7.3	24.8	25.6	િ	Ø	5	b	2	New WQ: LH
1	प्र	6.09	7.81	4.6	7.3	25.1	25.8	3	1.	マ		3	Renewal Time: 1030
1.25		1	Í	1			-				_		Kenewai-Sign-oil:
Meter ID:	38A	PHIB	0#15	धार्ण	2004	Eco9	1606						OH MÓ:
Control	19.5	8.16	7.75	7.9	7.1	24.6	24.6	5	5	5	\$	5	Date: 2/23/14
0,25	19.5	8.15	7.79	7.9	7.1	24.9	24.6	4	5	5	5	5	RT Stock Batch #:
0.5	17.5	8.15	7.79	8.1	7.2	25.1	24.9	\$5	5	5	5	5	Test Solution Prep:
0.75	19.5	8.13	7.82	8.2	7.2	25.3	25.2	5	5	5	5	5	New WQ:CP
1	195	8.18	7.82	8.2	7.2	25.6	25.5	2	1	7		2	Renewal Time:
1.25		-	_		-	<u></u>	-	*****	_	-	~ .	_	Renewal-Sign-pm
Meter ID:	388-	PH 18	PH 15	RD04	RD07	EC04	EC09						Old WQ: CP
Control	19.5	7.97	7.80	7.9	7.3	24.4	24.8	5	5	5	5	5	Date: 2 (24/14
0.25	19c5	8.03	7.83	7.7	7.1	24.5	25.0	5	5	5	5	5	RT Stock Batch #:
0.5	195	8.07	7.85	7.6	7.1	24.5	25.3	5	5	5	5	5	Test Solution Prep:
0.75	19.5	8.10	7.85	7.7	7.0	24.5	25.6	5	5	5	5	5	New WQ: CP
1	19.5	8.14	7.88	7.7	7.0	24.7	25.8	a.		2	- 	2	Renowal Time: (OOO
1.25	~	_	_		_		-	-	_	4	_	Í	Renewal-Sign-off: LL
Meter ID:	38A	enis	PH15	epot	ADO7	Eco9	EC09						Old WQ: CP
Control	19.4		7.70		7.0		25	5	5	5	5	5	Date: 2/25/14
0.25	19.4		1.13		7.0		25.4	5	5	ţs	5	ĺБ	Termination Time: 0920
0.5	19.4		ት ት		7.0		25. F	5	5	5	5	5	Termination Sign-off:
0,75	19.4		1.74		6.4		25.9	5	5	5	5	5	Old WQ: A5
	19.4		1.79		6.9		26.1	2	1	2	_	1	
1.25					_		-	_	-	_	-		
Meter ID:	38A		Philo		Pay		ECOP						

Chronic Topsmelt Dry Weight and Biomass Data

Client: Reference Toxicant Test ID #: 55119 Project # 22019

Test Material: Potassium Chloride Tare Weight Date: 2/22/14 Sign-off: AW5

Test Date: 2/18/14 Final Weight Date: 2/28/14 Sign-off: JLA

Control Control Control Control A ITI.85 ITT.90 5 I.31		·					
2 B 171.87 171.70 5 1.17 3 C 173.13 179.70 5 1.31 4 D 163.16 169.81 5 1.33 5 1.33 151.06 169.81 5 1.33 1.34 1.35 1.34 1.35	Pan ID	Concentration	Replicate	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
3	1	Control	A	171.85	177.90	5	1.21
1	2		В	171.87		5	1.17
5	3		С		179.70		1.31
6 025 g KCI A 159.86 165.05 5 1.04 7 B 141.66 148.15 5 1.29 8 C 151.31 159.77 5 1.69 9 D 180.92 189.39 5 1.69 10 E 160.93 166.86 5 1.21 11 0.5 g KCI A 171.17 176.90 5 1.116 12 B 170.76 176.84 5 1.22 13 C 162.83- 169.94 5 1.412 14 D 167.90 175.33 5 1.419 15 E 171.51 178.43 5 1.35 16 0.75 g KCI A 152.59 159.34 5 1.35 17 B 152.70 160.04 5 1.47 18 C 171.00 176.15 5 1.47 19 D 159.33 163.93 5 0.92 20 E 176.04 181.38 5 1.07 21 1 g KCI A 154.15 155.75 5 0.32 22 B 161.49 162.70 5 0.342 23 C 171.09 173.45 5 0.342 24 D 156.39 5 0.342 25 E 169.78 170.55 5 0.154	4		D	163.16	169.81	5	
7 B HI.66 HS.IS 5 1.29 8 C 151.31 15917 5 1.69 9 D 180.92 189.39 5 1.69 10 E 160.83 166.86 5 1.21 11 0.5 g KCI A 171.17 176.90 5 1.16 12 B 170.76 176.84 5 1.22 13 C 162.83 164.44 5 1.49 14 D 167.90 175.33 5 1.49 15 E 171.51 178.43 5 1.35 16 0.75 g KCI A 152.59 184.34 5 1.35 17 B 152.59 184.34 5 1.35 18 C 171.00 178.15 5 1.47 18 C 171.00 178.15 5 1.47 19 D 167.33 163.93 5 0.92 20 E 176.04 181.38 5 1.07 21 1 g KCI A 154.15 155.75 5 0.32 22 B 161.49 162.70 5 0.442 23 C 171.09 173.45 5 0.442 24 D 156.39 - 5 0 25 E 169.78 170.55 5 0.154 26 125 g KCI A 153.15 - 5 0 27 B 151.54 - 5 0 29 D 153.53 - 5 0 20 O 153.53 - 5 0 20 O 153.53 - 5 0 21 D 154.32 - 5 0 22 D 153.53 - 5 0 23 C 177.09 173.45 5 0 24 D 156.39 - 5 0 25 D 157.59 - 5 0 26 125 g KCI A 153.15 - 5 0 27 D 153.53 - 5 0 28 C 157.50 - 5 0 29 D 153.53 - 5 0 20 D 157.48 5 57.48 - 5 0 20 D 157.48 5 57.48 - 5 0	. 5		Е	151.06	160.82	5	1.95
8	6	0.25 g KCl	A		165.05	5	1.04
9 D 180.92 189.39 5 1.69 10 E 160.93 166.86 5 1.21 11 0.5 g KCl A 171.12 176.90 5 1.16 12 B 170.76 176.84 5 1.22 13 C 162.82 169.94 5 1.42 14 D 167.90 175.33 5 1.49 15 E 171.51 178.43 5 1.35 16 0.75 g KCl A 152.59 197.34 5 1.35 17 B 152.70 160.04 5 1.44 18 C 171.00 178.15 5 1.43 19 D 197.33 163.93 5 0.92 20 E 176.04 181.38 5 1.07 21 1 g KCl A 154.15 185.75 5 0.32 22 B 161.49 162.70 5 0.442 23 C 171.09 173.45 5 0.442 24 D 156.39 - 5 0.154 25 E 169.78 170.55 5 0.154 26 125 g KCl A 153.13 - 5 0.154 27 B 151.54 - 5 0.154 28 C 152.50 - 5 0 29 D 153.53 - 5 0 30 E 164.32 - 5 0 0 0A1 146.90 146.87 - 5	7		В	141.68	148.15	5	1.29
10	8		С				1.69
11 05 g KCl A 171.17 176.90 5 1.10 12 B 170.76 176.84 5 1.22 13 C 162.82 169.94 5 1.42 14 D 167.90 175.33 5 1.49 15 E 171.51 178.43 5 1.35 16 0.75 g KCl A 152.59 159.34 5 1.35 17 B 152.70 160.04 5 1.47 18 C 171.00 178.15 5 1.43 19 D 159.33 163.93 5 0.92 20 E 176.04 181.38 5 1.07 21 1 g KCl A 154.15 155.75 5 0.32 22 B 161.49 162.70 5 0.349 23 C 171.09 173.45 5 0.442 24 D 156.39 - 5 0 25 E 169.78 170.55 5 0.154 26 125 g KCl A 153.13 - 5 0 27 B 151.54 - 5 0 28 C 152.50 - 5 0 29 D 153.53 - 5 0 QA1 146.90 146.87 - 5 QA2 166.99 166.92	9		D	180.92	189.39	5	1.69
11	10		Е	160.83	166.86	<u> </u>	1.2)
12 B 170.76 176.84 5 1.22 13	11	0.5 g KCl	A	171.17		5	
13	12		В	170.76	176.84	5	1.22
14	13		С	162.82	169,94		1.42
15	14		D	167.90		5	
16	15		E	171.51	178.43	5	
17	16	0.75 g KCl	Α	152.59			
18	17		В			5	
19 D 159.33 63.93 5	18		С	171.00			1.43
20 E 176.04 181.38 5 1.07 21 1g KCl A 154.15 155.75 5 0.32 22 B 161.49 162.70 5 0.342 23 C 171.09 173.45 5 0.472 24 D 156.39 - 5 0 25 E 169.78 170.55 5 0.154 26 125 g KCl A 153.13 - 5 0 27 B 151.54 - 5 0 28 C 152.50 - 5 0 29 D 153.53 - 5 0 29 D 153.53 - 5 0 20 QA 1 146.90 146.87 - 9 QA 2 157.48 157.48 - 9 QA 3 166.97- 166.92	19		D	157.33		5	
21	20		Е	176-04			
23	21	l g KCl	A	154.15		5	
23	22		В	161.49		5	
25 E 169.78 [70.55] 5 0.154 26 125 g KCI A 153.13 — 5 0 27 B 151.54 — 5 0 28 C 152.50 — 5 0 29 D 153.53 — 5 0 30 E 164.32 — 5 0 QA 1 146.90 146.87 — 6 QA 2 167.48 [57.48] — 6 QA 3 166.97 [66.92]	23		С	171.09		5	0.472
25 E 169.78 [70.55] 5 0.154 26 125 g KCI A 153.13 — 5 0 27 B 151.54 — 5 0 28 C 152.50 — 5 0 29 D 153.53 — 5 0 30 E 164.32 — 5 0 QA 1 146.90 146.87 — 6 QA 2 167.48 [57.48] — 6 QA 3 166.97 [66.92]	24		D	156.39		5	
26 125 g KC A 153.13 - 5 0 27 B 151.54 - 5 0 28 C 152.50 - 5 0 29 D 153.53 - 5 0 30 E 164.32 - 5 0 QA			Е		170.55	5	0.154
27 B 151.54 - 5 0 28 C 152.50 - 5 0 29 D 153.53 - 5 0 30 E 164.32 - 5 0 QA 1 146.90 146.87 - QA 2 167.48 157.48 - QA 3 166.97 166.92	26	1.25 g KCI	A				
28 C 152.50 - 5 0 29 D 153.53 - 5 0 30 E 164.32 - 5 0 QA 1 146.90 146.87 - QA 2 167.48 157.48 - QA 3 166.97 166.92				151.54			····
QA 1 146.90 146.87 - QA 2 157.48 157.48 - QA 3 166.92 - QA 3	28		С		_	5	
QA 1 146.90 146.87 - QA 2 157.48 157.48 - QA 3 166.92 - QA 3	29				-	5	
QA 1 146.90 146.87 - QA 2 167.48 157.48 - QA 3 166.97 166.92 -					ميد	5	
QA 2 167.48 157.48 — — — — — — — — — — — — — — — — — — —	QA 1				146.87		
QA 3 166.97 166.92 -							
					166.92		
		Balance ID:		BAL 01	BALOI		

	•	4 P